
Some Were Meant for C
The Endurance of an Unmanageable Language

Stephen Kell
Computer Laboratory

University of Cambridge
Cambridge, United Kingdom
stephen.kell@cl.cam.ac.uk

Abstract
The C language leads a double life: as an application program-
ming language of yesteryear, perpetuated by circumstance,
and as a systems programming language which remains a
weapon of choice decades after its creation. This essay is a
C programmer’s reaction to the call to abandon ship. It ques-
tions several properties commonly held to define the experi-
ence of using C; these include unsafety, undefined behaviour,
and the motivation of performance. It argues all these are
in fact inessential; rather, it traces C’s ultimate strength to a
communicative design which does not fit easily within the
usual conception of “a programming language”, but can be
seen as a counterpoint to so-called “managed languages”.
This communicativity is what facilitates the essential aspect
of system-building: creating parts which interact with other,
remote parts—being “alongside” not “within”.

CCS Concepts • Software and its engineering→ Gen-
eral programming languages; Compilers; • Social and
professional topics → History of programming languages;

Keywords systems programming, virtual machine, man-
aged languages, safety, undefined behavior

ACM Reference Format:
Stephen Kell. 2017. Some Were Meant for C: The Endurance of an
Unmanageable Language. In Proceedings of 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Onward!’17). ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3133850.3133867

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward!’17, October 25–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5530-8/17/10. . . $15.00
https://doi.org/10.1145/3133850.3133867

1 Introduction
While some were meant for sea, in tug-boats
’Round the shore’s knee,
(Milling with the sand,
and always coming back to land),
For others, up above
Is all they care to think of,
Up there with the birds and clouds, and
Words don’t follow.

—Tiny Ruins, from “Priest with Balloons”
I am not ashamed to say that I program in C, and that I

enjoy it. This puts me at odds with much of programming
language discourse, among both researchers and influen-
tial practitioners, which holds that C is evil and must be
destroyed. If only we had a “safe systems programming lan-
guage”! If only we could eke out a little more performance
in implementations of other languages, to remove the last
remaining motivation for using C! If only we could make
“the industry” see the error of its ways! Then C would be
eradicated, and there would be much rejoicing.

I am a “systems programmer”. It doesn’t mean I hack ker-
nels, so much as that I build systems—pieces of infrastructure
that integrate multiple interacting parts, and sit underneath
application code. Programming in C feels right for doing
this; it has a viscerally distinctive feeling compared to other,
safer, higher-level languages. Certainly, today’s experience
of programming in C remains, despite certain advances, un-
forgiving. But I have never felt C to be an encumbrance. C
is not a language I use because I’m stuck with it; I use it for
positive reasons. This essay explores those reasons and their
apparent contrast with conventional wisdom.

2 Two Viewpoints
The lyric from which this essay borrows its title evokes two
contrasting ways of being: that of the idealist who longs to
be among the clouds, and that of the sea-farers who carry
on their business on the planet’s all-too-limiting surface.
The idealist in the song is a priest, who takes literally to the
clouds: one day, clutching at helium balloons, he steps off
a cliff edge, floats up and away, and is never seen again.1

1This is, more-or-less, the true story of Father Antonio Adelir de Carli,
whose ill-fated April 2008 balloon flight from the Brazilian city of Paranagua
was a fundraising effort towards a “spiritual rest stop” for lorry drivers.

229

https://doi.org/10.1145/3133850.3133867
https://doi.org/10.1145/3133850.3133867

Onward!’17, October 25–27, 2017, Vancouver, Canada Stephen Kell

Meanwhile, the tug-boats far below symbolise another way
to live: plying their trade along the rocky shoreline that is
nature’s unmovable constraint. The seafarers’ perspective
is limited and earth-bound, shaped and constrained by hard
practicality.

Both viewpoints are familiar to anyone interested in pro-
gramming. The singer sympathises with the priest, as can
we all: it is natural to dream of a better world (or language,
or system) overcoming present earthly constraints, mov-
ing over and beyond the ugly realities on the ground. But
the priest’s fate is not a happy one. Meanwhile, just as the
tug-boat crews are doing the world’s work, the C language
continues to be a medium for much of the world’s working
software—to the continued regret of many researchers.
As researchers in language design and related topics, we

face a recurring question: how much ought we to idealise
the rocks and waves inhabited by practitioners? We can ide-
alise not only how gadgets work (machines, software), but
also why particular trade-offs win out in particular cases—
including why people use C. There is much valuable work
to be done in idealised terms, on designs, or in clean-slate
fashion, or atop theoretical rather than practical substrates.
But the balloonist’s view does not seem to explain the en-
durance of C, given its attendant problems; the sea-farers
seem to live in some other, incommensurable reality. To un-
derstand this phenomenon, we will have to think differently.
Over the remainder of the essay, I’ll argue the following
points (each in its own section), sharing the theme that we
need to think less about languages as discrete abstractions,
less hierarchically in general, and more about the systems
which embody languages—seeing language implementations
as parts of those systems, and not shying away from con-
textual details associated with implementation concerns and
non-portability. Despite this prevailing preference for talking
and thinking about languages in a discrete sense, I will also
note certain ways in which we have the habit of confusing
C’s implementations with the language itself.

• At application level, C’s continued popularity owes
mostly not to performance but to a host of unglam-
orous yet technically hard problems in the general ar-
eas of migration, interoperation and integration. These
are widely known but continue to be neglected and
undervalued as topics of research per se—perhaps, I
suggest, because they are about system design and en-
gineering research (no contradiction) more than they
are about languages (§4).
• For true “systems” programming (as I will define), C’s
benefits are of another kind. Again, performance is
not the issue; I will argue that communication is what
defines system-building, and that C’s design, partic-
ularly its use of memory and explicit representations,
embodies a “first-class” approach to communication
which is lacking in existing “safe” languages (§5).

• I consider the valuable but limited paradigm of man-
aged languages, and argue that it is not the only way
to achieve safe languages; in fact managedness rules
out first-class communication, so cannot replace C for
system-building. Managed approaches are founded on
hierarchical abstraction; I sketch an alternative “medi-
ated” approach which is relatively heterarchical, suits
alternative styles of program-level reasoning, but ap-
pears just as capable of safety guarantees, albeit at the
level of a system and not a language (§6).
• Issues of unsafety and undefined behaviour in C are
widely misunderstood, particularly in the extent to
which undefined behaviour is motivated by perfor-
mance, and also in what pertains to implementations
of C versus to the language specification. I elaborate on
this, helped by some choice words from a well-known
system-builder and C programmer (§7).

I’ll begin by recapping some conventional research view-
points on C that form the basis of dispute.

3 Pieces of a Debate
Some months back, social media conspired to point me to-
wards Trevor Jim’s article “C doesn’t cause buffer overflows;
programmers cause buffer overflows” [Jim 2015]. The title is
ironic; the article is one of a loose series, best summarised as
“don’t use C [or] C++; use safe languages” with a tone not far
short of outrage. C causes huge harm; why so little impetus
towards change?

The advice to prefer safe languages is hard to argue with
as far as it goes. The author’s credentials as a co-designer
of Cyclone [Jim et al. 2002], a safe language designed as a
replacement for C, are no coincidence. Indeed, it is fair to be
outraged. Untrapped buffer overflows are a ridiculous way
for software to fail in the 21st century. The list continues to
grow; 2014’s Heartbleed [CERT 2014] is a high-profile new
tip of an ancient iceberg.
Could the solution be as simple as refraining from using

languages that allow these errors? I contend not; at least,
before we can adopt this plan, we need to answer some
questions. Towhat extent are existing safe languages actually
capable of expressing the things that “unsafe” languages are
used for? Is it a language that is “safe”, or an implementation
of one? Rather than throwing away all that code, is it possible
simply to implement C safely, and would the result be useful?

The article was circulated on social media in a way which
reached both myself and some genuinely distinguished com-
puter scientists. The resulting conversationwas enlightening—
not so much for technical insight, but rather for its recircu-
lation of popular belief and folklore. I was alarmed at what
I read, because world experts in programming languages
were taking for granted a “fact” I intuitively felt sure to be

230

Some Were Meant for C Onward!’17, October 25–27, 2017, Vancouver, Canada

false: that the only technical issue keeping people using C is
performance.2

“I find it hard to believe that there aremany
situations where the extra efficiency (of-
ten imagined) is really merited when you
could have written the same code more
safely in Go or some other language that
provides more support to avoid memory
management errors.”

A familiar claimwas that better languages are the solution,
if only they can be made fast enough.

“With Rust, you can have it both ways. . . .
I agree that often one does not need the
extra efficiency, but for certain platforms
and applications it seems to be crucial (or
else why wouldn’t people have abandoned
C a long time ago).”

Why indeed. Others instead believed industry to be ma-
lignly opposed to improvements that are readily available.

“The very idea that C prevailed over the
various Pascal-like languages available in
the 1970s – and that practices were not re-
formed after the Morris worm in 1988 – is
proof that the industry thought it could get
awaywith serving up crap to its customers,
protected by warranty disclaimers. They
kept doing it for decades, until Windows
practically drowned in a tide of malware.
Shame.”
“Languages like C and C++ are popular
because they make it harder to write good
code, so improve wages and job security
of programmers.”

These beliefs are convenient, but seemed implausible to
me. Thankfully I was not completely alone in finding C an
enabling language; one respondent ventured as follows.

“I enjoy C andwriting C but I do it in awell-
managed, safe space for my enjoyment,
and certainly not out in public where I
might hurt somebody.”

I am usually the first to agree that the discipline of soft-
ware is infuriatingly slow to advance. We, as researchers,
are all implicated in this. No doubt industry is guided partly
by groupthink and inertia—but also in large part by hard
economic incentives. Rather than simple conservatism or a
bad attitude within industry, it seems more plausible that
our research is not doing the complete job. Unless we can
understand the real reasons programmers continue to use C,
2Direct quotations are used with permission of their authors—who remain
anonymous, since their identities would only be a distraction here. In two
cases where I did not hear back from the authors before the publishing
deadline, I have instead used paraphrases of the original quotations.

we risk researchers continuing to solve a set of problems that
is incomplete and/or irrelevant, while practitioners continue
to use flawed tools.

If these were not the true reasons, then what are? A couple
of other comments gave some insight. The first was about
tools.

“I honestly can’t imaginewriting C++with-
out ASAN anymore. Many memory bugs
are just too hard to solve quickly without
tools.”

The second was about availability, with an intriguing hint
about interoperability (or lack thereof) between numerical
domains and the domain of the machine.

“When I first studied programming, C and
Fortran were the essential languages to
know. Engineers worked with Fortran, and
embedded platforms came with compilers
only for C.”

I decided to write down my own list of reasons why I
believed people really use C. My first few attempts mostly
re-treaded a familiar argument affecting mostly application
code; I will recount these in the next section. I later realised
that systems code is different; I will return to this in the
section following (§5).

4 Application Code: Bad News, Bad News
Many of the issues keeping application code in C are known—
but were not remarked on by the respondents above, and
are nothing to do with performance. Rather, they have to
do with integration. Somehow, integration issues do not
come to mind as easily; “faster safe languages” is seen as the
Important Research Problem, not better integration.
What do I mean by “application code”? Any definition

is at best a rule of thumb, but we can usually recognise
application code when we see it. Programs and libraries
alike are application code if they are application-directed—
for example, libjpeg concerns pictures, and libssl concerns
sending messages privately and securely. By contrast, large
parts of of operating system kernels, language runtimes, or
infrastructure libraries like libc, concern the realisation of
the generic computational abstractions on offer (instruction
sets, processes, storage devices etc.). These units of code lack
particular human-facing application, but exist as vital cogs
in the overall machine, and gain function from their mutual
meshing-together. (As I will continue to elaborate later, this
interacting, communicating essence is particularly suited to
coding in C.)

4.1 Better is Worse
Decades earlier, considering the state of Lisp implementa-
tions, Richard Gabriel [1994] mused that C came from a
different design school than Lisp and other more academic-
flavoured projects. (The essence of C’s “worse is better” is

231

Onward!’17, October 25–27, 2017, Vancouver, Canada Stephen Kell

the preferred trade-off among simplicity, correctness, consis-
tency and completeness: it values simplicity the most, and
tolerates minor incorrectness, inconsistency and incomplete-
ness. In contrast, Lisp’s “the right thing” school prefers to
avoid these, and pay extra in complexity.) Almost orthog-
onally, though, he also observed that something about C’s
“worse is better” design presented far fewer integration diffi-
culties to the application programmer, relative to what had
yet been achieved with Lisp under the “right thing”.

“In the worse-is-better world, integration
is linking your .o files together, freely in-
tercalling functions, and using the same
basic data representations. You don’t have
a foreign loader, you don’t coerce types
across function-call boundaries, you don’t
make one language dominant, and you
don’t make the woes of your implementa-
tion technology impact the entire system.”

My own list began largely (I later realised) as a paraphras-
ing and elaboration of Gabriel’s points, also sharing some
similarity with remarks by Philip Wadler [1998] some years
later. Since it has a specific focus on C code today, it bears
recapping.

LanguageMigration: All-at-once orNot-at-all Like any
language, C persists partly because replacing code is costly.
But perversely, the implementation technologies favoured
by more modern languages offer especially unfavourable
effort/reward curves for migration. Migration all at once is
rarely economical; function-by-function is probably the de-
sired granularity. Essentially all high-level languages’ virtual
machines offer foreign function interfacing (FFI) systems
(consider Java’s JNI, Haskell 98’s standard FFI, and so on),
which make this near-impossible. Gabriel refers to “[coerc-
ing] types across function call boundaries” and to differ-
ing data representations. Although simple libraries exchang-
ing only primitives can get by with present FFIs (consider
for example the popular GNU multi-precision arithmetic
library gmp, used from many languages), functions exchang-
ing non-trivial data structures hit a wall: these structures
must be shared among code in multiple functions, hence (if
we are migrating function-by-function) between multiple
languages. So in which language are they defined? Either
they must be implemented twice, and deep copying-and-
coerce code inserted, or access must be functionalised into
simple primitive-signature operations and those functions
themselves FFI-wrapped. This forces a primitive interface
onto code which (by definition) does not suit it.

Transitive Economies Many libraries are written in C. Li-
braries lie under their clients so are more likely to be talking
directly to the hardware or operating system (usually easier
in C than in other languages) or, transitively, closer to code
that does this. The performance argument is relevant here,

albeit non-obviously. Since libraries “sit under” a fan-in of
many clients, they are more likely to justify the investment of
using less productive languages in return for faster or leaner
results. The client programmer ought still to have a free
choice of languages, but C “leaks” across the join, because
the pain of language boundaries presents strong incentives
to using C in the client too.

Primitive Tools, Great Works New materials and tools,
whatever their merits, would hardly justify rebuilding the
pyramids of Egypt. Why rewrite code at all? Primitive tools
can still produce great work. The proposition of rewriting
codebases is an expensive one, and an increase in bugs is
highly likely in the short term. If (as I argue in §6) it is feasible
to implement C in a dynamically safe manner, the existing
code’s apparent security and debuggability drawbacks are
obviated too.

Linking versus Dominance Gabriel notes the benefit of
linking .o files together and avoiding the dominance of one
language over another. This symmetric, flat, language-agnostic
“linking” composition operator is the complete opposite of
present foreign function interfaces’ offerings. These provide
only directional, hierarchical notions of “extending” and (of-
ten separately) “embedding” APIs [Ierusalimschy et al. 2011].
The former lets one introduce foreign code (usually C) as a
new primitive in the VM, but only if the C is coded to some
VM-specified interface. The latter lets foreign code call into
VM-hosted code, but again, only using an API that the VM de-
fines. “A C API is enough” is the VM engineer’s mantra. The
resulting glue code is not only a mess, but worse, is required
to be in C. . . all of this for a programmer trying not to use
C! This is no ordinary C code, either: the programmer faces
huge amounts of VM-specific detail, often implementation-
specific. Consequently, the worse-yet-better approach of
sticking with C everywhere often wins. Although other out-
comes sometimes prevail, whether grasping the FFI nettle
or rewriting a whole codebase in the new language, the ef-
fort/reward curve should not be this punishing.
(Higher-level FFI approaches based on code generation

attempt to soften the curve, but with limited success to date.
A thorough critical review of these approaches could fill
another essay; to this author’s knowledge, all stop short
of eliminating the “dominance” to which Gabriel refers—
either by demanding buy-in to a single virtual machine, by
non-idiomatically embedding one language in another, by
requiring repetition of “foreign” interface definitions in an
ad-hoc notation, by failing to accommodate a sufficiently
large majority of existing C code, and/or by coming with
severe compiler- or VM-specific limitations.)

The “Languaginess” of Interfaces Amodule’s implemen-
tation language ought to be an implementation detail. Cur-
rent infrastructure makes it an essential part of its interface;
APIs exist “in” a language, not apart from them. This relates

232

Some Were Meant for C Onward!’17, October 25–27, 2017, Vancouver, Canada

both to the glue coding we just discussed, and the “foreign
loader” mentioned by Gabriel. Our best answers so far are
to use interface definition languages (IDLs) of systems such
as COM and CORBA, the infamous distributed computing
middlewares. Aside from their specialisation towards over-
the-wire marshalling, hence their relative unsuitedness to
in-memory interoperation, there are clear downsides. The
prescriptive code-generation paradigm forces a peculiar and
usually unwanted style of coding (including peculiar data
types) on the programmer. Unless one has “bought in” to a
particular IDL from the outset, there is usually no economi-
cal path for retroactively migrating to the IDL later [Kaplan
et al. 1998].

Interface Co-evolution Compounding the cost of inter-
faces’ languaginess is that interfaces change, and most co-
evolve with the implementations they attempt (but succeed
only imperfectly) to encapsulate. Programming most often
proceeds by targetting the interfaces of code written previ-
ously. We seldom question this, but it is a strange property.
A hardware designer, by contrast, does not design an inte-
grated circuit (IC) by considering the fine details of some
specific other IC that is already on the market. Although
“abstraction layer” software interfaces can be devised sep-
arately from their implementation, this is not the default;
it requires additional up-front investment, and works only
to the extent that future changes can be anticipated. FFIs,
IDLs and other techniques based on manually gluing user
code onto auto-generated (“stub”-style) interfaces, amplify
the cost of this direct dependency by spreading interface
details further: not only between the modules on either side,
but into a third (usually hairy) glue module.

4.2 Languages, Tools, Systems
A related issue inhibiting moves away from C is that newer
languages offer immature tools—including being (paradoxi-
cally) the languages least likely to come with tool support for
effectively mixing languages. We conceive new languages
as new worlds; this is the balloonist’s way.
Even Google, which has less reason than most to be in-

timidated by creating a fresh world, has struggled with this,
notably in the support for interactive debugging in the Go
language. This remains in purgatory, at least in its ground-up
golang implementation.3

Contrast this with gccgo, the tug-boat worker’s approach
to the same language design. It is an alternative implemen-
tation which integrates into a wider, richer, more complex,
quirkier and more limiting programming system: the GNU
gcc-binutils-gdb triumvirate. This infrastructure does not

3See Rob Pike’s post “The state of gdb support” to golang-dev on 2014/3/5,
since when the status within that project has not changed significantly to
my knowledge. The technical issues here are subtler and more complex
than I have properly explored, and third-party debuggers do exist, but the
omission remains striking.

decompose neatly along language lines; it is not a collection
of cleanly delineated language implementations, each with
tools. Rather than adding discrete tools on the side, the sys-
tem has a common basic fabric. Cognate perspectives can be
found elsewhere: at SPLASH 2012, Jim Coplien’s infamous
keynote expressed a scepticism about tools, which David
Ungar echoed with the analogy that “if every bolt on my
car had its own little handle, I wouldn’t need to go and get
a wrench”. It is this call to emphasise systems that I echo
here—and as I will note later (§5.4), it accords strongly with
the customs of C implementation, if not the C language per
se.
The moment we start talking about FFIs and the like,

we are talking about language implementations, not lan-
guage designs. Most FFIs are unashamedly implementation-
specific. Although a few (such as Java’s) are standardised
per-language, these tend to be the least usable, since the
desire to accommodate diverse implementations leads to ex-
tra indirections and only weak guarantees. Being “standard”
also does not stop alternatives from springing up—the last
15 years have seen at least CNI [Bothner 2003], JNA4, GNFI
[Grimmer et al. 2013], Panama5 and no doubt others.
If better solutions are there to be found at the imple-

mentation level, we will only find them if the correspond-
ing problems are viewed as sufficiently research-worthy.
Gabriel believed the problems to be matter of “implementa-
tion technology”—not inherent to the Lisp approach.

“The very best Lisp foreign functionality
is simply a joke when faced with the above
reality. Every item on the list can be ad-
dressed in a Lisp implementation. This
is just not the way Lisp implementations
have been done in the right thing world.”

Twenty-six years later, most high-level language imple-
mentations struggle with essentially the same problems. Per-
haps the problems are intractable after all; or perhaps, simply,
cultural inertia is powerful, and energy has yet to be spent
on deeper re-thinking. The “systems” versus “languages” di-
chotomy, also expounded by Gabriel [2012], fits well here.
Focus on each language as a discrete, all-surrounding “world”
neglects the fact that languages need not be the bearers of
all innovation, and that systems, with language implementa-
tions as one part, make up the fabric of any programming
environment. Balloonists continue to do what looks to be
“the right thing”, creating new worlds. Down around the
shore, these new worlds remains out of reach.

4Java Native Access, documented at https://github.com/java-native-access/
jna as retrieved on 2017/4/21.
5documented at http://openjdk.java.net/projects/panama/ as retrieved in
2017/4/21.

233

https://github.com/java-native-access/jna
https://github.com/java-native-access/jna
http://openjdk.java.net/projects/panama/

Onward!’17, October 25–27, 2017, Vancouver, Canada Stephen Kell

5 Communicative Code
I have talked about application code; what about systems
code? I will return shortly to what exactly that means; first,
let’s look at some code that definitely fits this description.

5.1 Objects in Space
One famous piece of operating system code concerns a trick
for loop unrolling, later to be known as “Duff’s device”. (The
clearest complete explanation is probably that by Simon
Tatham [2000].) The trick concerns how to unroll a simple
loop of the following form.

do { /∗ unsigned count > 0 assumed ∗/
∗to = ∗from++;

} while(−−count > 0);

Leaving aside the cleverness of Duff’s unrolling solution
(not shown, and not relevant to us here), the loop at first
appears useless, because all but the last write to *to is never
read.6 The code is nevertheless useful, because *to does not
refer to a program variable; in fact it refers to a memory-
mapped register on which all the writes will have some
effect.7 Despite that, the language lets us access it just like
any other object in memory.
More generally, C’s notion of memory, arranged in an

address space, allows code to address (point to) and access
(read, write, call) objects inhabiting that space. Unlike most
other languages, those objects need not have been defined
within our program. In fact they even need not behave in
the same way as such objects. Despite this, in all cases we
access them in the same, uniform way.

Besides our own program’s objects in memory, there may
be “alien” objects with the same memory-like behaviour,
such as memory populated by the operating system. There
may also be objects that do not even behave like memory,
such as device registers. In both cases, these objects exist to
facilitate communication with the world outside the program.
In C, these objects are “first-class”: with themwe can perform
all the usual operations that we can perform on our own
program variables. We can read them and write them; take
their address and pass it around; or (if appropriate) call them.
When programming in C, my own mental model views

memory as a space of communication channels. The C ab-
stract machine’s notions of reads and writes are access to
channel endpoints, roughly in the sense of Shannon and
Weaver [1949]. Channels transmit symbols, drawn from an
alphabet; most channels have memory-like “storage” seman-
tics, meaning all but the last-transmitted symbol are lost. But
other channels, like the register in Duff’s code, may have
other semantics more akin to those of typical communication
channels.

6Given the absence of any kind of synchronisation, we can also assume that
it is not intended to be observed by concurrently executing code.
7In modern C, *to would be declared volatile to signify this, preventing a
sufficiently clever compiler from eliding any writes.

C’s explicit access to representations, in the form of raw
chars, also fits this channel model: this is what lets us com-
pute over symbols, even symbols that are not native to the
language implementation. Crucially, this facility is bidirec-
tional. We can see any program variable as chars, and also
interpret any chars as some program type. This lets us exploit
whatever commonality does exist between these alphabets,
avoiding unnecessary “byte-level” programming. For exam-
ple, code written to run on a big-endian machine can access
the integer fields in a network packet header directly, even
in a buffer that is supplied by the operating system rather
than defined in C code.
Here is another snippet, showing an example of an alien

object that is not a register but plain old memory. Like later
snippets in this section, it comes from code in one of my own
projects. It is using shamelessly platform-specific knowledge
of the process’s memory layout to access some data supplied
by the operating system in a structure called the auxiliary
vector, provided by all modern Unix systems (since AT&T’s
System V r4).8

for (const char ∗∗ p_str = &environ[0]; ∗p_str ; ++p_str)
{

if (∗ p_str > (const char∗) stackptr
&& ∗p_str < (const char ∗) stack_upper_bound)

{
/∗ It ' s pointing into the auxv ' s environ block . ∗/
uintptr_t search_addr = (uintptr_t) ∗p_str ;
search_addr &= ~(ALIGNOF(ElfW(auxv_t)) − 1);
ElfW(auxv_t) ∗searchp = (ElfW(auxv_t) ∗) search_addr;
while (!(/∗ complex cond ∗/))
{

searchp = (ElfW(auxv_t) ∗) ((uintptr_t) searchp −
ALIGNOF(ElfW(auxv_t)));

}
ElfW(auxv_t) ∗ at_null = searchp;
assert (at_null−>a_type == AT_NULL

&& !at_null−>a_un.a_val);
/∗ ... break ; ∗/

}
}
return NULL;

Unlike the use of Duff’s device, we are clearly talking to
memory—but memory that came from the operating system,
not from anything defined within our C program or its li-
braries. First, we walk the environ array, which contains a
mix of pointers to “native” strings (defined by the program)
and “alien” strings created by the operating system (OS). The
fact that we can create such a mixed structure at all is itself
an instance of the first-classness afforded to alien objects.
Next, we use environment-specific knowledge to identify
a string that came from the OS, and to parse the memory
lying nearby it. This memory is in an OS-defined structure,

8It is rather an accident that this code is necessary—it happens that no
portable API exists for getting access to this particular structure, although
some systems do provide a getauxval().

234

Some Were Meant for C Onward!’17, October 25–27, 2017, Vancouver, Canada

called the auxiliary vector, that lives at the top of the initial
stack (in processes on an ELF9-based System V-style Unix
environment). This structure contains various other data
passed to us by the operating system.
This is obviously environment-dependent code. It feels

decidedly “unsafe”. (Indeed, at present, it is. I will keep the
issue of safety somewhat sidelined to begin with, in favour
of focusing on expressiveness—but I will return to it in §6.)
Nevertheless, it is possible to enumerate the assumptions
under which the code is correct. These assumptions involve
memory: that the address space is laid out a certain way, that
the auxiliary vector’s representation obeys a certain format,
and that certain properties of environment strings’ locations
may be relied on. These properties hold in the System V-style
Unix process environments that the code targets.

A fairly conventional C bounds checker could do a pretty
good job on this code, if only it had information about the
bounds and internal structure of the auxiliary vector. Tool
support conceived “for C”, however, cannot provide this in-
formation, because the auxiliary vector is an alien object:
it does not come from code written in C. Systems code of-
ten accesses “alien” structures, defined by the language im-
plementation, the linker, the operating system, and so on.
Many of these implementation-specific details are routinely
documented and specified in application binary interface
(ABI) specifications such as that of the Santa Cruz Operation
[1997]. These supplement the C language with a large num-
ber of properties, including about data representation and
address space layout, against which systems programmers
may justifiably rely when targeting systems conforming to
that ABI. (In this case, not quite all of the relied-on proper-
ties are documented, so arguably the code is not portably
correct. However, the wider point stands: properties orig-
inating outside a language, and outside any code written
in that language, may be used to reason about code in that
language.)

5.2 Alien Memory
Our next snippet is doing instrumentation of some target
code, in the form of machine instructions. It does so by iterat-
ing over all instructions in a range of memory, and invoking
a callback on each.

9Executable and Linkable Format—the principal binary file format on mod-
ern Unix platforms, originally defined in System V r4 [AT&T 1990].

static void walk_instrs (unsigned char ∗pos, unsigned char ∗end,
void (∗cb)(unsigned char ∗, unsigned, void ∗), void ∗arg)

{
unsigned char ∗cur = pos;
while (cur < end)
{

unsigned len = instr_len (cur , end);
cb(cur , len , arg);
cur += (len ? len : 1);

}
}

This tiny piece of code is doing something that would
be completely inexpressible in any current safe language I
know. The code doesn’t care where the instructions came
from. It can read and write instructions appearing in any
executable region of memory. It can include virtual machines’
JIT-compiled regions, code compiled from languages other
than C, and so on. Our C implementation can operate on data
(in this case code, but code is data) that it knows nothing
about, from a region of the address space that it has no role
in managing or creating.
Contrast this with a safe language. How would we even

begin? To iterate over something using the natural features
of the language (object references, array indexing), it would
need to be an array managed by that same language imple-
mentation. Alternatively, at best there might be an API ex-
posing access to peek and poke all of memory—but using that
would mean we are no longer using the basic language fea-
tures, but a tiny embedded mini-language (the API) which is
unlikely to be as expressive or convenient. Put differently, in
such a scenario, communication is no longer first-class. (This
is not remedied by operator overloading or other niceties,
which would at best paper over this distinction.)

Actually, I lied a little: the code does care where the in-
structions came from. It cares so that it can exclude itself
from instrumentation. To do so, its caller (not shown) refers
to some global variables marking the beginning and end
of its own text segment. Interestingly, these variables are
not defined in any C code at all. Rather, they are defined by
linker inputs—an adjoining part of the toolchain. As I (and
co-authors) argued recently [Kell et al. 2016], linker inputs
can be thought of as a distinct programming language in
their own right. As I cover shortly (§5.4), interoperability
with “linker-speak” from C is assured—not by the language,
not by an FFI, but by the implementation norms of C, as a
cooperating piece in an open-ended toolchain. Attempts to
re-implement or replace C neglect this at their peril.

5.3 Systems as Interactions
It is tempting to think that the code in these snippets is a
special case. It is clearly environment-dependent. The second
snippet contains meta-level, reflective code, not base-level
application logic. And it clearly occurs deep within some

235

Onward!’17, October 25–27, 2017, Vancouver, Canada Stephen Kell

infrastructure. Is this really contributing to the argument
about C’s utility?
I’d happily agree that the most compelling applications

of C are, indeed, something to do with this kind of code. I
call it “systems code”—not necessarily referring to kernel
code or the like, but about code whose job is interaction
or (equivalently) communication. A system, by definition,
consists of multiple interacting parts.
This is communication in a stronger sense than that in

which a client communicates with a library. Whenever we
program against an interface, there are two cases which, al-
though they feel alike, are fundamentally different. When
application code targets a library API, it does so usually to
get a virtual copy of some abstractions for its own private use.
To use this copy is not an act of communication; the appli-
cation code still operates in a self-contained world, just one
that is now augmented by whatever definitions the interface
provides.

By contrast, we may be using an interface to communicate
with some actual entity on the other side. Such an entity is
not “part of the program”; it sits elsewhere. This is what
C expressly facilitates in a first-class fashion. This distinc-
tion, about communication versus private abstraction, is not
coincidentally reminiscent of the observations by William
Cook [2009] about the pluralist, messaging-based style of
data abstraction that is essential to objects and distinct from
that offered by abstract data types.
(The contrast between hierarchical library-style abstrac-

tions and heterarchical communication seems to me remark-
ably similar to that between the lambda calculus—a system
of computation via hierarchical, functional abstraction—and
the pi calculus [Milner et al. 1992], a heterarchy of processes
sharing an explicitly evolving communication structure. Al-
though experts are quick to point out that one may easily
encode one in the other, that does not erase the contrast in
point-of-view that the two systems display.)

5.4 C versus Tools: Porosity and Plurality
Allowing communicative code is not the only way in which
C treats “the outside” differently. C implementations are
distinctively cooperative with other tools, sitting alongside
them at both build time (the assembler and linker) and at run
time (the operating system and the system’s debugging prim-
itives). Each tool’s boundaries with these neighbouring tools
and systems are intentionally porous (consider asm state-
ments, linker directives, etc.), and this allows allows further
diverse and decoupled tools built upon them, exploiting com-
monality where it exists, and targeting mechanisms defined
by the surrounding system (albeit non-portably) not by the
language. In this way C acquires tool support without speci-
fying its own tools “world” or ecosystem; the system, not the
language, holds the power. It would be wrong to call a debug-
ger like gdb a “C debugger”—by design, gdb mostly doesn’t
care what language you use, and its C front-end is a small

and relatively inessential piece. Perhaps surprisingly, it does
not work by “lowest common denominator” sharing of some
fixed ABI; in fact it accepts a Turing-powerful descriptive
language precisely in order to span arbitrary computational
distances among disparate language implementations’ inter-
nal choices. I wrote previously [Kell 2015] about this design
at length, including the way certain core ideas were inde-
pendently reinvented in the “mirrors” principles of Bracha
and Ungar [2004]. That is not to defend gdb in detail, or
the arcana of the technologies involved, which show all the
negative effects of decades-long piecemeal evolution. The
key idea is to avoid prescriptiveness in favour of a pluralist
design. This can again be thought of as hierarchy versus
heterarchy: heterarchies concern existence “alongside”, not
“within” or “underneath”.

Replicating these benefits in future languages is partly a
cultural problem. For those who are used to thinking about
designing or implementing a language, pluralism is a radical
shift in mindset. This shift has much in common with the
criticism by David Parnas [1978] of the premise of software
development as concerning writing a program.

Dijkstra’s “Discipline of Programming”
uses predicate transformers to specify the
task to be performed by the program to
be written. The use of the definite article
implies that there is a unique problem to
be solved and but one program to write. . . .
The usual programming courses neither
mention the need to anticipate changes
nor do they offer techniques for designing
programs in which changes are easy.

To accept pluralism is to break with the idea that infras-
tructure can or should be made of sealed boxes (whether
languages or tools). The sealed-box endgame has each box’s
creators engaged in an endless squabble over which one gets
to “win”. The dominant implementation paradigm for high-
level languages is the virtual machine—a monist conception
to the core. Virtual machines, as implementation artifacts,
realise a language as a box that is closed, save for tiny open-
ings. A virtual machine seeks to contain, not coexist—except
for minimal concessions in the form of the I/O and foreign
function interfacing primitives.10 The predictable squabble
has been going on for decades.
To be pluralist, language implementations must change

tack. They cannot encapsulate their every decision; they
cannot stay opaque to the outside world. Instead they must
proactively describe their own operation to the outside, in
a form that is machine-readable and programmable against.
Debugging metadata is the definitive example, and provides

10By contrast, virtual machines as a specification device I have no problem
with.

236

Some Were Meant for C Onward!’17, October 25–27, 2017, Vancouver, Canada

a strong and surprising ability, in the folklore of C and re-
lated languages’ implementations, to decouple tools from
language implementations.
One cost of this approach is the burden on the compiler

and tool authors of establishing communication conventions,
such as debugging information. Another hurdle is cultural.
Porous boundaries among tools simply seem like anathema.
Surely, following Parnas, we should not expose information,
but hide it? Of course, diligent students of Parnas know that
hiding from whom is everything; in this case, information is
being exposed only to programs, as a parameter that may
vary, not to humans as a detail to fix in code.

Until pluralist designs are adopted as a matter of course,
every advance in language design creates a squabble, and
unreasonably attempts to build a fresh world from scratch.
This does not scale, and sticking with it dooms our program-
ming infrastructure to the kind of immaturity and sluggish
advancement that critics of C often lament.

5.5 Symbols and Meanings
We have seen how C’s abstraction for communicating is
memory, a large collection of individually addressable com-
munication channels. A channel has symbols, in the form of
a representation of data. In C, that representation is man-
ifest: the language actively permits programming against
representations directly, including manipulating them (as
bytes) as well as (separately) treating them with meaning
(up to data types).

To illustrate the use of manifest representations, let’s see
yet another example. This one is aboutmemory-mapped I/O—
a very powerful primitive given to us by modern operating
systems, for reasons both of efficiency (reducing copying, re-
using buffering and swapping logic) and of programmability:
what could be easier than manipulating data on disk exactly
as if it were in memory? It is also, naturally, a communication
feature. Not coincidentally, it is an abstraction which modern
languages have continually failed to expose to their users, at
least in its full power, but which is readily available from C.
The code in this case builds and manipulates an ELF file

image. Rather than requiring separate serialisers and deseri-
alisers to manage distinct on-disk and in-memory formats,
the manifest nature of representations in C allows the lan-
guage’s own features—data types, defined with struct—to
capture both the abstract and the concrete. They imply a par-
ticular bytewise layout both on disk and in memory.11 The
code exploits this to maintain ELF files in both places simul-
taneously, using a single pile of code, in a single style. Each
file is created from a prototypical “zygote” in memory, by
copying that memory into a memory-mapped region. Note
that again, we also use linker features whose semantics are
11Pedantic readers will note that the C language definition does not fix
these details—although any C implementation will do so, via adherence to
some platform-defined ABI standard. The code is non-portable with respect
to differing application binary interfaces.

crucial—this time, to keep multiple structures contiguous in
memory (the section directive; the unabridged code includes
several other uses of this).

/∗ Declare a prototypical ELF header in memory. ∗/
static Elf64_Ehdr ehdr
__attribute__ ((section (" . elf_zygote ")))
= {

. e_ident = { ' \177 ' , 'E ' , 'L ' , 'F ' , ELFCLASS64,
ELFDATA2LSB, EV_CURRENT, ELFOSABI_GNU, 0 },

. e_type = ET_DYN,

.e_machine = EM_X86_64,

. e_version = EV_CURRENT,

. e_entry = 0,

. e_phoff = (uintptr_t) &phdrs[0] − (uintptr_t) &ehdr,

. e_shoff = (uintptr_t) &shdrs[0] − (uintptr_t) &ehdr,

. e_flags = 0,

. e_ehsize = sizeof (Elf64_Ehdr),

. e_phentsize = sizeof (Elf64_Phdr),

. e_phnum = PHDRS_N /∗ text, data, rodata , dynamic ∗/ ,

. e_shentsize = sizeof (Elf64_Shdr),

. e_shnum = SHDRS_N /∗ ... ∗/ ,

. e_shstrndx = 1
};
/∗ snip more defs , also using . elf_zygote section ∗/
void ∗ _dlbind_elfproto_begin = &ehdr;
void ∗ dlcreate (const char ∗libname)
{

/∗ ... ∗/
void ∗addr = mmap(NULL, _dlbind_elfproto_memsz,

PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
if (addr == MAP_FAILED) goto out;
/∗ Copy in the ELF proto ∗/
memcpy(addr, _dlbind_elfproto_begin ,

_dlbind_elfproto_stored_sz);
/∗ ... ∗/

}

A final interesting property of this code is that its be-
haviour is undefined according to the C language standard.
The reason is that it callsmemcpy() across a range of memory
comprising multiple distinct C objects, copying them all into
memory-mapped storage in a single operation. Without this
the copy would have to be coded in multiple steps, reducing
readability. Although C’s memcpy() isn’t obliged to support
this case, real implementations generally do. I return to the
thorny issue of undefined behaviour later (§7).

Contrast all this with a managed12 language, where most
likely, the best we can do is write serialisers and deseri-
alisers between the byte-wise (disk) representation and the
in-memory layout (objects of some unknown representation).
There is no defined relationship between in-memory and
on-disk layouts. Achieving the conciseness of the ELF format
and the code which uses it therefore becomes impossible.

12This term is in popular use but is seldom defined. For now, a loose intuition
suffices, which I assume the reader already possesses. However, I will return
more closely to its definition in §6.

237

Onward!’17, October 25–27, 2017, Vancouver, Canada Stephen Kell

Also, the primitive of memory-mapped I/O is necessarily cur-
tailed; the managed runtime must be responsible for placing
data in memory itself. It is easy to fix the first problem—by
defining a language that is explicit about its data represen-
tation, but like other managed languages in other respects.
Fixing the latter is harder, because in a managed language
there are two kinds of memory: one is first-class memory,
which is private to the language implementation and allows
no communication. The other is the byte buffers we pass
in and out of some magic narrow interface; these are mem-
ory that is communicated, but the operations they support
are different from, and less expressive than, those of ordi-
nary memory. Communication has become a second-class
concern.

5.6 Going Intergalactic
Meditating on this communicativity suddenly gave way to a
realisation: C is designed for communicating with aliens!

J.C.R. Licklider conceived the ARPAnet as an “intergalactic
network”, and was paraphrased by Alan Kay as follows.

“If we succeed in making an Intergalactic
Network, then our main problem will be
learning to communicate with Aliens.”

Licklider was thinking about how software could func-
tion across displacements in space and time wide enough to
find incompatible pre-existing “languages” on two sides of a
newly formed communication link. This could be a network,
or a programmatic interface—Licklider and his followers
would probably not have seen a strong distinction between
these.
In the case of C, I am clearly taking a few liberties. The

“network” is smaller in scale—its scope is a single address
space. And the “aliens” are not necessarily long-evolved dis-
tant neighbours—they are simply code or data that do not
share the same host language implementation. The ques-
tion of bootstrapping meaning is one for later—simply a
mechanism for communication is the prerequisite. But an
important aspect of the idea transfers: the C language (as
specified in a book) and its implementations (in real pro-
gramming systems) enshrine communicativity with these
“not-known-to-me” entities. The ability to communicate is
not an afterthought; it is essential and central to the design.
C and its implementations enshrine communicativity in

three ways: by the compiler’s place in a wider toolchain;
by the surrounding meta-level (debugging) programmability
of the target environment; and by the core abstraction of
memory that is both at the heart of the language’s design and
shared with these surrounding elements. This is how C gives
us access to the operating system and to hardware. The same
property also gives us access to other systems in the same ad-
dress space, which is why C finds so much use as a low-level
glue language, despite its questionable suitability as such
by any other criteria. Memory is a communication channel,

shared with the world outside the language. Representations
are the symbols of that channel. C lets us communicate freely
using these, even with alien entities.
This is, I claim, the deepest reason why C remains un-

vanquished. Replacements or reimplementations invariably
forgo or compromise communicativity. They break the links
with the surrounding toolchain (particularly the assembler
and linker), or provide a superficially similar but essentially
different abstraction of memory. In so doing, they sacrifice
its essential value as a systems programming language.

6 To Manage or to Mediate
To avoid the dangers of unfettered access to memory, high-
level languages lock things down. User code may deal only
with memory that the language implementation can account
for. This is what I define to be the essence of “managed” en-
vironments: they manage memory, by restricting users to
their own services for allocating, accessing and reclaiming
it. While this admits run-time safety properties that help
debugging and security, unfortunately, doing so also forgoes
communicativity: we cannot write any of the code we just
saw, which dealt with memory that was “alien”. How do
“managed” and “safe” really relate? I will argue that the for-
mer is a means to the latter end, but it is not the only possible
means.

6.1 Managing What?
Our discourse uses “safe languages” and “managed lan-
guages” almost interchangeably. Conventional wisdom holds
that if we want to be safe, we have to be managed. Safety is
gained from control: of memory allocation, object layouts,
of what pointers are created, and so on; by imposing strong
invariants from above. The managed language lays down its
vision of what memory is to hold, and enforces it, creating a
tight seal.

“Managed”, however, does not strictly imply “safe”, since
real managed language implementations invariably provide
unsafe primitives—such as Java’s infamous sun.misc.Unsafe
in HotSpot, OCaml’s Obj.magic, Haskell’s (standard) un-
safePerformIO, and so on. These may or may not be standard
or even documented, but somehow they always turn out to
merit inclusion.

Does the reverse hold—does “safe” imply “managed”? Or
is there another means to make languages safe, perhaps
without sacrificing a communicative memory abstraction?
I believe there is, and will argue in particular that C could
be implemented safely without losing its communicativity,
albeit in a form that would look very different from a “man-
aged” implementation.

238

Some Were Meant for C Onward!’17, October 25–27, 2017, Vancouver, Canada

6.2 What is Safety Anyway?
I have learned to enjoy provoking indignant incredulity by
claiming that C can be implemented safely. It usually tran-
spires that the audience have so strongly associated “safe”
with “not like C” that certain knots need careful unpicking.

In fact, the very “unsafety” of C is based on an unfortunate
conflation of the language itself with how it is implemented.
Working from first principles, it is not hard to imagine a safe
C.13 As Krishnamurthi and Felleisen [1999] elaborated, safety
is about catching errors immediately and cleanly rather than
gradually and corruptingly. Ungar et al. [2005] echoed this
by defining a safety property as “the behavior of any pro-
gram, correct or not, can be easily understood in terms of the
source-level language semantics”—that is, with a clean error
report, not the arbitrary continuation of execution after the
point of the error.

Let us consider the familiar type- andmemory-safety prop-
erty of (classic) Java14. A property rather like this is quite
permissible by the C standard, because the operations which
would corrupt the program state—out-of-bounds accesses,
use-after-free, use of an incorrectly-typed pointer, and so
on—necessarily have undefined behaviour. How corruption
occurs is inherently implementation-dependent, so can never
be described in a portable language specification. Being un-
defined does not preclude a clean trap; in fact, as I will argue
later (§7), the design philosophy of Unix not-so-tacitly sanc-
tions one if it can be provided. But such sanctioning does
not belong in a portable language specification, because this
assumption need not hold in all scenarios—such as in a tiny
embedded device, or in a system simple enough that it can
be proven free from undefined behaviours.
Consider unchecked array accesses. Nowhere does C de-

fine that array accesses are unchecked. It just happens that
implementations don’t check them. This is an implemen-
tation norm, not a fact of the language. Consider pointer
arithmetic—almost synonymous with “unsafe”, but actually
just a nicety for array indexing. A pointer is not an iterator
over raw memory; it has a type and a strong caveat, that it
is anchored to the object in memory that it was created to
point at. Overrunning into some other object has undefined
behaviour. A clean trap of such overruns is both desirable
and entirely permitted by the language.
At this point, my interlocutors are back on script. That

sounds like fat pointers; how do you preserve binary com-
patibility? The answer is in the literature [Nagarakatte et al.
2009]. What about temporal safety? It’s also in the litera-
ture, both on explicit checks over manual management [Na-
garakatte et al. 2010] and on automatic management (the
wealth of precise garbage collection literature, but also as
13Conversely it is possible to imagine an uncommunicative implementation
of C, which does not support any of the code snippets we saw earlier.
14This property took a while to become true—it was eventually fixed after it
was pointed out that earlier versions of Java were “not type-safe” [Saraswat
1997].

applied to C [Necula et al. 2002; Rafkind et al. 2009]). What
about all those obscure pointer tricks, like XORing them?
These are not really pointer tricks so much as address cal-
culation tricks, and happen in the integer domain not the
pointer domain (recalling that pointers are anchored to the
lvalue from which they were created). Since an address only
becomes a pointer on the cast back, it can be checked at that
point [Kell 2016].What aboutmemory scribbling via pointers
to char (raw bytes)? Using scribbled-on data is mostly unde-
fined, and for the cases when it isn’t, one can insert checks
after the scribbling and before use of the scribbled-on value.
These latter two kinds of check are a bit tricky: they rely
on some authority about what’s in memory—something like
run-time type information, allowing questions like “what’s
on the end of this pointer?” or “what are these bytes repre-
senting?”. That, too, is in the literature, and the overheads
are mostly low [Kell 2015]. This paragraph is a mixture of
existing and hypothesised work (or, my sources tell me, work
in progress) but I believe the essential point is not in doubt:
a safe implementation of C is possible.
With all this checking, won’t the result be slow? Cer-

tainly it will be slower, although this is critical only if one
believes (wrongly, as I have been claiming) that people use
C for performance. At one time, Java “was slow”, partly be-
cause of such dynamic checks, but the steady application of
static reasoning techniques for eliminating them has essen-
tially eliminated the problem. Java usually lags on memory
grounds—consumption, predictability and cache interactions.
A C with comparable dynamic checking would do better on
these counts anyway, for example because C’s more expres-
sive options for placement and layout of structured data
enable better memory locality.

Is such a safe implementation of C really suitable for sys-
tems programming, rather than merely application program-
ming? If we understand system-building as communicativity,
then certainly such a system retains communicativity—so
long as alien objects can be described to it in a manner suffi-
cient for dispatching the same dynamic checks. If I memory-
map a file, say, I can safely access that memory only if the
structure and meaning—the bounds and the types, roughly—
are described much like those of other in-memory objects.
Tools and systems for providing these descriptions are cur-
rently lacking—but are a logical extension of the run-time
type information already developed in recent work. In the
case of file formats, some cases like the ELF example we saw
earlier (§5.5) show that the format has already been defined
for us, thanks to the manifest layout of objects declared in C.
Once we have descriptions of memory, we also need de-

scriptions of how different areas of memory relate. The nat-
ural generalisation of this idea is to address-space contracts,
which I consider shortly (§6.5). A further detail is, of course,
the extent to which they behave like “memory” at all—as
evidenced, for example, by the device-register programming

239

Onward!’17, October 25–27, 2017, Vancouver, Canada Stephen Kell

seen in Duff’s device, and in general by the wider semantic
envelope allowed of volatile objects.
If we mean systems programming in the sense of

performance-critical low-level code, then I suspect the an-
swer is “in some cases, but not all”. The true answer remains
to be seen; in-the-small performance is less critical than is
often imagined, even to kernel hackers.
By this point I hope to have convinced the reader that

the sort of implementation of C I have outlined offers a
compelling path at least for application code that has already
beenwritten in C—much ofwhich is code that “safe language”
advocates have been telling us needs to be thrown away and
rewritten.

6.3 You Say “High-Level”. . .
For systems programming within language runtimes, some
prior literature has previously asked whether C and other
“low-level” languages are appropriate, and concluded by advo-
cating a variant of Java extended with unsafe primitives that
can be selectively enabled [Frampton et al. 2009; Wimmer
et al. 2013]. To me, this has always seemed to be answer-
ing a confused question. Of course, the resulting code still
“looks like” Java, but what really defines “high-” or “low-”-
level programming? Is a version of Java augmented with
unchecked pointer values really still high-level? Is a dynami-
cally checked C really still a low-level language? Convincing
arguments are difficult in these terms. It seems preferable to
level up—to make safe what was unsafe, rather than drilling
careful holes, however small, in the hull of a previously safe
ship—if all else is equal. Of course, at the sharp end of sys-
tems code, all else is never equal. In a world where compiler
bugs are not uncommon—such as in kernels, thread sched-
ulers or garbage collectors—language-derived guarantees
are always suspect, and the question of safety becomes more
about confidence in any particular implementation.

In fairness, there is one real benefit of the “it all looks like
Java” approach, deriving from the re-use of tools and peda-
gogy accumulated around the Java language. C is certainly
not a friendly language to learn, and not just for reasons of
unsafety. Its learning curve is steepened by a small standard
library, often quirky syntax (such as “declaration reflects
use” [Kernighan and Ritchie 1988, p. 122]), reliance on ex-
plicit indirection even in common cases (dynamic memory
allocation, dynamic dispatch, passing by reference, and so
on), laborious error-handling, and a culture of brevity that
is sometimes extreme. Java-like systems programming envi-
ronments can easily do better by these criteria, regardless of
whether they are truly “higher-level”.

6.4 A Matter of Performance
I have claimed already that even low-level code could make
use of a safe, dynamically checked implementation of C. Al-
though there is a cult of performance around the C language,
it does not come from systems programmers, whose attitude

to performance is generally holistic and led by design. If any-
thing, extreme attention to performance comes from the op-
posite: attempts to generalise C towards specific application
domains, particularly numerical applications. Linus Torvalds,
no stranger to systems programming, is a persistent critic of
language standards bodies and compiler implementers for
pursuing small performance improvements at the expense of
predictability and debuggability—as he expounded in char-
acteristically direct style in a cross-mailing-list exchange in
February 2016.

. . . the original C designers were better at
their job than a gaggle of standards people
who were making bad crap up to make
some Fortran-style programs go faster.

These issues come down to the interpretation of undefined
behaviour in C—to which I will return briefly in §7.

6.5 Mediation, not Management
So far I have outlined a C that has greater dynamic checking
and the ability to accept descriptions—metadata of some
kind—about the address space and the objects therein. Is that
really enough, and does it constitute a fundamental break
from the approaches of managed languages?
“Managed languages” is already a misnomer, because

managed-ness is usually a property of an implementation,
not a language. While one cannot rule out that a specifica-
tion might preclude any other implementation approach, but
this seems unlikely, given that language definitions attempt
to give semantics to programs rather than specify how to
achieve them. Languages may specify safety, which simply
means that errors are trapped cleanly. But we don’t have
to specify safety properties in the language definition (as
C elects not to); they can instead be a property of the im-
plementation. Similarly, unsafety should not be confused
with error-proneness. Safety can be achieved by having the
language implementation exclude all but a set of necessary
and fully-defined operations—but it doesn’t have to be. It
might instead support a wider set of operations, including
error-prone ones (like manual storage management), but still
ensuring that errors are trapped when they occur.
Fundamentally, a safety guarantee requires quantifying

over all possible scenarios. It means somehow “closing the
box”—circumscribing the domain of quantification. It is only
if we insist on a safe language, as opposed to a safe im-
plementation of a not-specified-as-safe language, that this
box-closing trick has to happen inside the language defini-
tion. Since language definitions are usually intended to be
portable, this means our box-closing trick must be generic
with respect to the host environment.

The rest is history. As we know, the way this requirement
is satisfied, in managed languages, is to drastically restrict
communication with that host environment, usually down
to some generic “file” or “channel” operations that deal in

240

Some Were Meant for C Onward!’17, October 25–27, 2017, Vancouver, Canada

byte buffers. The role of these is to provide a narrow, opaque
interface that can be laid down in the language definition.

But we can reject the idea of safety as a property specified
in languages. It can instead be a property that the surround-
ing system establishes for us. If we do this, the language
specification itself, as a portable document divorced from
the system, necessarily becomes somewhat underspecified.
Conversely, we need to refine the role of the wider system,
into one that can mediate between the diverse objects that
might appear in an address space, and the code that would
access them.
An operating system necessarily provides facilities by

which separate units of software communicate. By and large,
these map to memory in some fashion. Safety may therefore
be bootstrapped partly within the design of the operating
system services that deal in memory.

In a typical modern operating system these are the virtual
memory subsystem (on the kernel side; activated by run-time
system calls) and the linker (on the user side; largely acti-
vated at load time, in the dynamic linker). However, equiva-
lent services exist even where there is no surrounding oper-
ating system, such as in embedded targets or hypervisors:
there is still an ahead-of-time link step that makes these
decisions, together with some stuff that configures the initial
environment, whether a BIOS, bootloader, ROM program-
mer, dipswitch array, or rat’s nest of jumper cables. In these
cases, the surrounding system is defined by the hardware
platform rather than an operating system, but the principle
is the same. So long as there is C code to be written, there is
a notion of address space and a system for managing it.

Communicative code makes assumptions about what lies
within the address space, and defines its own behaviour
in a way that is conditional on those assumptions. Given
an adequate specification for code’s surroundings, we can
bootstrap safety properties on top of the language definition,
rather than within it.
Consider the code snippets we surveyed earlier: each’s

correctness depended on some property of the address space
layout in relation to its own memory. Not coincidentally, the
idea of “assume-guarantee” reasoning—reasoning composi-
tionally about pieces of a whole using mutually condition-
alised properties—is well established in software verification.
The same ideas in on-line reasoning, specifically dynamic
checking, are familiar from the extensive literature on con-
tracts, originating as simple assertions but now generalised
considerably [Findler and Felleisen 2002].
Contracts can be said to mediate interactions. Contracts,

and similar styles of conditional reasoning, seem to offer
an alternative and general basis for safety properties (and
indeed correctness properties) of unmanaged code. This is
not a technical paper, so, conveniently perhaps, is not the
place to develop any details in the idea of address space con-
tracts. But much as communication demands a shift from

hierarchy to heterarchy, these concepts of mutual condition-
ality turn units of code and data into reciprocally “mediating”
entities—a natural and stark contrast to the unilaterality of
“managed” environments, in which the desired properties
are imposed by fiat from above. Rather than levelling down
by sacrificing communication, there is reason to believe that
we can level up, by finding inherently compositional ways
of establishing the properties we seek. Language-level safety
properties become simply a degenerate case: properties that
hold under a generic, controlled, alien-free environment.

6.6 Safety and the Meta-level
Implementations of C are typically, in certain ways, meta-
circular. That does not mean that they are themselves written
in C, although they can be. As noted by Chiba et al. [1996],
in a true metacircular system each turn around the “circle” is
actually advancing the same system in some orthogonal di-
mension, adding some feature, service or behaviour that the
base system lacked. (It follows that the “same language” prop-
erty of a metacircular interpreter is a relatively superficial
and uninteresting one, and neither necessary nor sufficient
for a metacircular system. A self-hosting compiler, say, is not
meaningfully metacircular, because the compiling compiler
is not re-used or extended by the compiled compiler—they
simply happen to be expressed in the same language.)

Most obviously in C, we note that a malloc() implementa-
tion is usually written in C—or rather, in a subset of C that
lacks malloc() since malloc() is mandated by the C standard.
Doing this requires invoking C’s “porosity”, noted earlier
(§5.4), with respect to the surrounding system, typically by
using the assembler to issue system calls. In so doing, both
“base” (malloc()-less) and “extension” (malloc()-enabled) Cs
exist within the same system, modelling a kind of metacir-
cular extension. (Of course, the assembly code is given no
semantics by the C language specification, but gains its mean-
ing from the specifications of themachine and the assembler.)
A more extreme example is a Unix-style dynamic loader,
whose initial routines are typically written in a subset of
C restricted (also using knowledge of the compiler) so as
to use only stack- and program counter-relative addressing
modes, because the loader’s own program text has not yet
been relocated (it must do that itself!).
Our instrumentation code snippet (§5.2) is another ex-

ample of metacircular extension—here used to add services
via a trap-and-emulate layer over the instruction stream. By
instrumenting the base program, yet excluding itself, it is
working with two implicit meta-levels: its own, which (to
avoid infinite regress) must do without the added service,
and the user code’s, to which that service is added. C does not
define a “reflection system” per se, but the language’s core
abstraction—a communicative memory—naturally allows
code to reflect on its own implementation, which is found
in memory like other objects (here as stored instruction and
data objects). The result is in some sense more powerful than

241

Onward!’17, October 25–27, 2017, Vancouver, Canada Stephen Kell

many a reflective language’s built-in facilities. This ability to
employ one’s own abstractions in an act of self-extension is
the essence of metacircularity as an engineering technique.

Doing so is, of course, dangerous—and my reason for men-
tioning all this relates to safety. A naïve view might be that
establishing memory safety for code such as a malloc() im-
plementation is impossible, given that the code is responsible
for providing the very abstraction in whose terms we would
like to state our safety properties—about allocated chunks
and their boundaries. But in fact, the malloc() code is simply
C code working lower down the helix, on a different view
of the same memory. There, too, safety properties may be
stated and established: themalloc() should only write into its
own arena, say, not some wholly unrelated area of memory.
The helical view, of distinct meta-levels at which distinct
properties are sought, promises a much deeper set of “safety”
notions appropriate for code residing at different places in
the helix. My own infrastructure models an “allocator hier-
archy” [Kell 2015] which appears already to capture much
of this relation in the specific case of allocators.

7 An Alternative History of Undefinedness
Brian Kernighan, although not a designer of the C language,
is perhaps its most eloquent exponent, co-authoring the
classic text on the language [Kernighan and Ritchie 1988].
He is also known for a debugging aphorism [Kernighan and
Plauger 1978].

“Everyone knows that debugging is twice
as hard as writing a program in the first
place. So if you’re as clever as you can be
when youwrite it, howwill you ever debug
it?”

Achieving debuggability and reliability through simplicity
and comprehensibility was central to the Unix philosophy.
Somehow, modern implementations of C have diverged ut-
terly from this. In the words of Linus Torvalds, they are adept
at “turning [a] small mistake into a real and exploitable se-
curity hole”. His complaint was directed at compiler authors
for their eagerness to exploit undefined behaviour in the C
language. This makes simple programming errors difficult to
detect, and silently escalates them from what might be clean
crashes into dangerous continuations of execution, often
with security consequences. C compilers try to be as clever
as possible, at the expense of simplicity and debuggability.

Undefined behaviour mostly appears in the C standard as
statements of the form “if cond, the behaviour is undefined”.
Here, cond is an error condition: only incorrect programs
allow it to occur. A compiler exploits this when reasoning
about code by inserting (at least conceptually) the proposi-
tion “assume not cond” as an input to its reasoning engine.
This assumption typically enables code transformation.

For example, Chris Lattner [2011] explains optimisations

based on undefined behaviour using the following simple
example.

void contains_null_check (int ∗P) {
int dead = ∗P;
if (P == 0)
return;

∗P = 4;
}

Since dereferencing a null pointer, even from otherwise
dead code, is undefined, the compiler can assume that the
pointer is not null, admitting arbitrary consequences in
the cases where this assumption is false. “Arbitrary con-
sequences” is the chosen interpretation of “undefined be-
haviour”. In this case it allows all but the last statement
to be deleted, which in a less trivial example would cause
execution of code that the preceding check intended to skip.

The arbitrary is the enemy of the debuggable. Undefined
behaviour appears to be a joke in poor taste: it works so
thoroughly against debuggability as to make Kernighan and
colleagues seem thorough hypocrites.

Fortunately there is another explanation. Behaviour is left
undefined not to allow optimisation, but as an inevitable
consequence of two things. Firstly, the program containing
it is an error—the language implementation is not required
to support it. Secondly, no behaviour for detecting or handling
the error can be prescribed in all cases.
What should happen is a matter for implementations; it

is impossible, in the language specification, to anticipate
the details of the implementation scenario. So, no particular
behaviour can be specified. In fact, if only one valid imple-
mentation scenario—perhaps the tiny embedded device, or
a system for running only verified-correct code—can admit
corrupting failure or other arbitrary consequences, then the
language specification must allow this. And so the behaviour
must be left undefined.15
This is not say that these behaviours could instead

have been treated as implementation-defined. Invoking
an implementation-defined behaviour is emphatically not
an error, since the language implementation is obliged
to handle this in some consistent fashion. It would be
perverse if implementations could “define as undefined”
these behaviours, subverting the intention of legitimate
implementation-defined behaviours (such as whether right-
shifting a signed number propagates its sign bit rightwards)
and making the construct meaningless. Therefore, any condi-
tion that is properly an unrecoverable error—like dereferenc-
ing a null pointer—simply cannot become implementation-
defined behaviour. There are a few grey areas, particularly

15This suggests the possibility of a stratified language specification, with
stronger properties for implementations targeting conventional execution
environments. This would be feasible, and indeed research on precise speci-
fication of “de facto C” suggests a move in this direction [Memarian et al.
2016]. However, standard bodies remain to be persuaded into accepting this
step-change in complexity.

242

Some Were Meant for C Onward!’17, October 25–27, 2017, Vancouver, Canada

with arithmetic operations where undefinedness could ar-
guably be downgraded. But the need for both mechanisms
is not in doubt.
Compiler writers take the opportunity to “assume not

cond”. A non-identical but very similar effect on optimisation
can be had by instead inserting a test: “if cond: abort”. Both
ways give us a postcondition in which cond is not true, and
let us optimise subsequent code accordingly—albeit at the
cost of evaluating cond at run time, which may not be easy or
efficient to implement. The vast dynamic-checking literature
is concerned with exactly this: inserting just enough checks
of this kind (or, sometimes, a non-aborting kind) while widen-
ing the space of efficiently evaluable conds (so as to include
things like run-time bounds or types).

Torvalds himself mentions16 the possibility of extra code
yielding the same fast-path optimisations without the sur-
prises of undefined behaviour.

“Have you ever seen code that cared about
signed integer overflow? Yeah, getting it
right can make the compiler generate an
extra ALU instruction once in a blue moon,
but trust me—you’ll never notice. You will
notice when you suddenly have a crash or
a security issue due to bad code generation,
though.

When contradicted with the example of loop vectorisation,
he continues.

“It would generally force the compiler to
add a few extra checks when you do vec-
torize (or, more generally, do any kind of
loop unrolling), and yes, it would make
things slightlymore painful. Youmight, for
example, need to add code to handle the
wraparound and have amore complex non-
unrolled head/tail version for that case.”

Finally he notes a difference in attitude between compiler
writers and system builders.

“Performance doesn’t come from occa-
sional small and odd micro-optimizations.
I care about performance a lot, and I actu-
ally look at generated code and do profiling
etc. None of those three options have ever
shown up as issues. But the incorrect code
they generate? It has.”

Today’s compiler authors are reluctant to generate ex-
tra code: this complicates their task, and for what reason?
From a language standpoint alone, there is none; the slightly
faster and shorter code is better according to all available
metrics (speed and size), and remains within the letter of

16. . . in a message dated 2016/2/28, cross-posted to various lists, avail-
able at https://gcc.gnu.org/ml/gcc/2016-02/msg00381.html as retrieved on
2017/7/13.

the language. But this primacy of the language specifica-
tion is a cultural issue, not a necessary consequence of that
specification’s existence.

Compiler authors are quick to claim that the performance
penalty of not exploiting undefined behaviour would be sig-
nificant. This claimmay ormay not be true; tomy knowledge,
evidence either way is lacking. Certainly, if we turn off all the
optimisations which currently exploit undefined behaviour,
the generate code is slower. The question is rather about
whether, if we declined to exploit undefined behaviour for
optimisation, we could implement a non-identical but com-
petitive selection of optimisations—just differently, such as
Torvalds describes. This might include extra tests, giving the
same postcondition for later optimisation but branching to
clean aborts and/or “carry on” slow paths.
The claim that doing so would be inexcusably inefficient

is, at best, in need of justification. It is plausible that code
size increases would cause problems for embedded code, but
even the tiniest embedded devices now seem beefy (even
to those with short memories). On commodity platforms,
the argument seems untenable: spare instruction-level par-
allelism means extra ALU instructions cost very little; and
the code size penalty is also unlikely to be significant. Of
course, this remains speculation until such reimplemented
optimisations exist.
It would be unfair not to acknowledge the value of vari-

ous recent compiler improvements for detecting undefined
behaviour, such as LLVM’s UBSan tool. My critique of these
approaches would be that they detect problems but do not,
by themselves, fix them. They also rely too much on disci-
plined opt-in; there is still no safe default. This matters for
the common case where old “believed correct” code is recom-
piled with a newer compiler, whose new optimisations open
up bugs or security vulnerabilities. One “obvious” technical
escape route would be to make the extra optimisations, not
the checking, the opt-in.
In summary, undefined behaviour as a specification de-

vice is essential for portability, but its use as an enabler of
optimisations is distinct—certainly not as inevitable, obvious
or traditional as some claim. It is odd that it could be so
ingrained in the culture of compiler writers, despite being
so far from the original spirit of C. I suggest again that lan-
guages have gained undue primacy—what is written in the
language specification is all that matters, even though the
end to which the language is used, namely system-building,
has other considerations.

8 Conclusions
I have argued that C’s enduring popularity is wrongly as-
cribed to performance concerns; in reality one large compo-
nent of it (the “application” component) owes to decades-old
gaps in migration and integration support among proposed
alternatives; another large component of it (the “systems”

243

https://gcc.gnu.org/ml/gcc/2016-02/msg00381.html

Onward!’17, October 25–27, 2017, Vancouver, Canada Stephen Kell

component) owes to a fundamental and distinctive property
of the language which I have called its communicativity, and
for which neither migration nor integration can be sufficient.
I have also argued that the problems symptomatic of C code
today are wrongly ascribed to the C language; in reality they
relate to its implementations, and where for each problem
the research literature presents compelling alternative im-
plementation approaches. From this, many of the orthodox
attitudes around C are ill-founded. There is no particular
need to rewrite existing C code, provided the same benefit
can be obtained more cheaply by alternative implementa-
tions of C. Nor is there a need to abandon C as a legitimate
choice of language for new code, since C’s distinctive fea-
tures offer unique value in some cases. The equivocation
of “managed” with “safe” implementations, and indeed the
confusion of languages with their implementations, have
obscured these points.

Rather than abandoning C and simply embracing new lan-
guages implemented along established, contemporary lines,
I believe a more feasible path to our desired ends lies in both
better and materially different implementations of both C
and non-C languages alike. These implementations must
subscribe to different principles, emphasising heterarchy,
plurality and co-existence, placing higher premium on the
concerns of (in application code) migration and interoper-
ation, and (in the case of systems code) communicativity.
My concrete suggestions—in particular, to implement a “safe
C”, and to focus attention on communicativity issues in this
and any proposed “better C”—remain unproven, and perhaps
serve better as the beginning of a thought process than as a
certain destination. C is far from sacred, and I look forward
to its replacements—but they must not forget the importance
of communicating with aliens.

Acknowledgments
I thank Philipp Haller and Paolo Giarrusso for their part
in a formative conversation, Stephen Dolan for his part in
several others, Peter Sewell and Jon Crowcroft for comments
on earlier versions of the text, and (last but not least) the
anonymous reviewers for their patient and highly construc-
tive feedback. This work was supported by EPSRC grant
EP/K008528/1, “Rigorous Engineering for Mainstream Sys-
tems”.

References
AT&T. 1990. UNIX System V Release 4 Programmer’s Guide: ANSI C and

Programming Support Tools. AT&T, Upper Saddle River, NJ, USA.
Per Bothner. 2003. Compiling Java with GCJ. Linux Journal (2003).
Gilad Bracha and David Ungar. 2004. Mirrors: design principles for meta-

level facilities of object-oriented programming languages. In Proceedings
of the 19th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications (OOPSLA ’04). ACM, New
York, NY, USA, 331–344. https://doi.org/10.1145/1028976.1029004

CERT. 2014. OpenSSL TLS heartbeat extension read overflow discloses
sensitive information. Vulnerability Note VU#720951. (2014). https:

//www.kb.cert.org/vuls/id/720951 as retrieved on 2017/8/28.
Shigeru Chiba, Gregor Kiczales, and John Lamping. 1996. Avoiding con-

fusion in metacircularity: The meta-helix. In Object Technologies for
Advanced Software: Second JSSST International Symposium, Kokichi Futat-
sugi and Satoshi Matsuoka (Eds.). Springer, Berlin, Heidelberg, 157–172.
https://doi.org/10.1007/3-540-60954-7_49

William R. Cook. 2009. On Understanding Data Abstraction, Revisited. In
Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA ’09). ACM,
New York, NY, USA, 557–572. https://doi.org/10.1145/1640089.1640133

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-
order Functions. In Proceedings of the Seventh ACM SIGPLAN International
Conference on Functional Programming (ICFP ’02). ACM, New York, NY,
USA, 48–59. https://doi.org/10.1145/581478.581484

Daniel Frampton, Stephen M. Blackburn, Perry Cheng, Robin J. Garner,
David Grove, J. Eliot B. Moss, and Sergey I. Salishev. 2009. Demystifying
Magic: High-level Low-level Programming. In Proceedings of the 2009
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’09). ACM, New York, NY, USA, 81–90. https://doi.
org/10.1145/1508293.1508305

Richard P. Gabriel. 1994. Lisp: Good News, Bad News, How to Win Big. AI
Expert 6 (1994), 31–39.

Richard P. Gabriel. 2012. The Structure of a Programming Language Revo-
lution. In Proceedings of the ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward!
’12). ACM, New York, NY, USA, 195–214. https://doi.org/10.1145/2384592.
2384611

Matthias Grimmer, Manuel Rigger, Lukas Stadler, Roland Schatz, and
Hanspeter Mössenböck. 2013. An Efficient Native Function Interface
for Java. In Proceedings of the 2013 International Conference on Princi-
ples and Practices of Programming on the Java Platform: Virtual Ma-
chines, Languages, and Tools (PPPJ ’13). ACM, New York, NY, USA, 35–44.
https://doi.org/10.1145/2500828.2500832

Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar Celes.
2011. Passing a Language Through the Eye of a Needle. Commun. ACM
54, 7 (July 2011), 38–43. https://doi.org/10.1145/1965724.1965739

Trevor Jim. 2015. C doesn’t cause buffer overflows, programmers
cause buffer overflows. Blog article. (2015). http://trevorjim.com/
c-doesnt-cause-buffer-overflows--programmers-cause-buffer-overflows/
as retrieved on 2017/8/28.

Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James
Cheney, and Yanling Wang. 2002. Cyclone: A Safe Dialect of C. In
Proceedings of the General Track of the USENIX Annual Technical Con-
ference (ATEC ’02). USENIX Association, Berkeley, CA, USA, 275–288.
http://dl.acm.org/citation.cfm?id=647057.713871

Alan Kaplan, John Ridgway, and Jack C. Wileden. 1998. Why IDLs Are Not
Ideal. In Proceedings of the 9th International Workshop on Software Speci-
fication and Design (IWSSD ’98). IEEE Computer Society, Washington,
DC, USA, 2–7. http://dl.acm.org/citation.cfm?id=857205.858288

Stephen Kell. 2015. Towards a Dynamic ObjectModelWithin Unix Processes.
In 2015 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward!) (Onward! 2015). ACM,
New York, NY, USA, 224–239. https://doi.org/10.1145/2814228.2814238

Stephen Kell. 2016. Dynamically Diagnosing Type Errors in Unsafe
Code. In Proceedings of the 2016 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA 2016). ACM, New York, NY, USA, 800–819. https:
//doi.org/10.1145/2983990.2983998

Stephen Kell, Dominic P. Mulligan, and Peter Sewell. 2016. TheMissing Link:
Explaining ELF Static Linking, Semantically. In Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2016). ACM, New York,
NY, USA, 607–623. https://doi.org/10.1145/2983990.2983996

244

https://doi.org/10.1145/1028976.1029004
https://www.kb.cert.org/vuls/id/720951
https://www.kb.cert.org/vuls/id/720951
https://doi.org/10.1007/3-540-60954-7_49
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/1508293.1508305
https://doi.org/10.1145/1508293.1508305
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/2500828.2500832
https://doi.org/10.1145/1965724.1965739
http://trevorjim.com/c-doesnt-cause-buffer-overflows--programmers-cause-buffer-overflows/
http://trevorjim.com/c-doesnt-cause-buffer-overflows--programmers-cause-buffer-overflows/
http://dl.acm.org/citation.cfm?id=647057.713871
http://dl.acm.org/citation.cfm?id=857205.858288
https://doi.org/10.1145/2814228.2814238
https://doi.org/10.1145/2983990.2983998
https://doi.org/10.1145/2983990.2983998
https://doi.org/10.1145/2983990.2983996

Some Were Meant for C Onward!’17, October 25–27, 2017, Vancouver, Canada

Brian W. Kernighan and Phillip James Plauger. 1978. The elements of pro-
gramming style. McGraw-Hill.

Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming
Language (second ed.). Prentice Hall.

Shriram Krishnamurthi and Matthias Felleisen. 1999. Safety in programming
languages. Technical Report TR 99-352. Rice University.

Chris Lattner. 2011. What Every C Programmer Should Know About Unde-
fined Behavior. Blog article (in three parts). (2011). http://blog.llvm.org/
2011/05/what-every-c-programmer-should-know_21.html as retrieved
on 2017/7/13 (third part, containing links to others).

Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis,
David Chisnall, Robert N. M. Watson, and Peter Sewell. 2016. Into
the Depths of C: Elaborating the De Facto Standards. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’16). ACM, New York, NY, USA, 1–15. https:
//doi.org/10.1145/2908080.2908081

Robin Milner, Joachim Parrow, and DavidWalker. 1992. A calculus of mobile
processes, I. Information and Computation 100 (1992), 1–40.

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. 2009. SoftBound: highly compatible and complete spatial
memory safety for C. In Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation (PLDI ’09). ACM,
New York, NY, USA, 245–258. https://doi.org/10.1145/1542476.1542504

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. 2010. CETS: Compiler Enforced Temporal Safety for C.
In Proceedings of the 2010 International Symposium on Memory Manage-
ment (ISMM ’10). ACM, New York, NY, USA, 31–40. https://doi.org/10.
1145/1806651.1806657

George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured:
Type-safe Retrofitting of Legacy Code. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’02). ACM, New York, NY, USA, 128–139. https://doi.org/10.1145/
503272.503286

David L. Parnas. 1978. Designing Software for Ease of Extension and
Contraction. In Proceedings of the 3rd International Conference on Software
Engineering (ICSE ’78). IEEE Press, Piscataway, NJ, USA, 264–277. http:
//dl.acm.org/citation.cfm?id=800099.803218

Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. 2009. Precise
Garbage Collection for C. In Proceedings of the 2009 International Sym-
posium on Memory Management (ISMM ’09). ACM, New York, NY, USA,
39–48. https://doi.org/10.1145/1542431.1542438

The Santa Cruz Operation, Inc. 1997. System V ABI specification, edition
4.1. (1997).

Vijay Saraswat. 1997. Java is not type-safe. Web note. (1997). http://www.
cis.upenn.edu/~bcpierce/courses/629/papers/Saraswat-javabug.html as
retrieved on 2017/8/28.

Claude E. Shannon and Warren Weaver. 1949. A Mathematical Theory of
Communication. University of Illinois Press.

Simon Tatham. 2000. Coroutines in C. Web page. (2000). http://www.
chiark.greenend.org.uk/%7esgtatham/coroutines.html as retrieved on
2017/8/28.

David Ungar, Adam Spitz, and Alex Ausch. 2005. Constructing a metacir-
cular Virtual machine in an exploratory programming environment. In
Companion to the 20th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications (OOPSLA ’05). ACM, New
York, NY, USA, 11–20. https://doi.org/10.1145/1094855.1094865

Philip Wadler. 1998. Why No One Uses Functional Languages. SIGPLAN
Not. 33, 8 (Aug. 1998), 23–27. https://doi.org/10.1145/286385.286387

Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan,
Laurent Daynès, and Douglas Simon. 2013. Maxine: An Approachable
Virtual Machine for, and in, Java. ACM Trans. Archit. Code Optim. 9, 4,
Article 30 (Jan. 2013), 24 pages. https://doi.org/10.1145/2400682.2400689

245

http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_21.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know_21.html
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/503272.503286
https://doi.org/10.1145/503272.503286
http://dl.acm.org/citation.cfm?id=800099.803218
http://dl.acm.org/citation.cfm?id=800099.803218
https://doi.org/10.1145/1542431.1542438
http://www.cis.upenn.edu/~bcpierce/courses/629/papers/Saraswat-javabug.html
http://www.cis.upenn.edu/~bcpierce/courses/629/papers/Saraswat-javabug.html
http://www.chiark.greenend.org.uk/%7esgtatham/coroutines.html
http://www.chiark.greenend.org.uk/%7esgtatham/coroutines.html
https://doi.org/10.1145/1094855.1094865
https://doi.org/10.1145/286385.286387
https://doi.org/10.1145/2400682.2400689

	Abstract
	1 Introduction
	2 Two Viewpoints
	3 Pieces of a Debate
	4 Application Code: Bad News, Bad News
	4.1 Better is Worse
	4.2 Languages, Tools, Systems

	5 Communicative Code
	5.1 Objects in Space
	5.2 Alien Memory
	5.3 Systems as Interactions
	5.4 C versus Tools: Porosity and Plurality
	5.5 Symbols and Meanings
	5.6 Going Intergalactic

	6 To Manage or to Mediate
	6.1 Managing What?
	6.2 What is Safety Anyway?
	6.3 You Say ``High-Level''…
	6.4 A Matter of Performance
	6.5 Mediation, not Management
	6.6 Safety and the Meta-level

	7 An Alternative History of Undefinedness
	8 Conclusions
	Acknowledgments
	References

