ROP Gadget Prevalence and Survival under
Compiler-based Binary Diversification Schemes

Joel Coffman
The Johns Hopkins University
Applied Physics Laboratory
joel.coffman@jhuapl.edu

Christopher C. Wellons
The Johns Hopkins University
Applied Physics Laboratory
christopher.wellons@jhuapl.edu

ABSTRACT

Diversity has been suggested as an effective alternative to
the current trend in rules-based approaches to cybersecurity.
However, little work to date has focused on how various
techniques generalize to new attacks. That is, there is no
accepted methodology that researchers use to evaluate di-
versity techniques. Starting with the hypothesis that an
attacker’s effort increases as the common set of executable
code snippets (return-oriented programming (ROP) gadgets)
decreases across application variants, we explore how differ-
ent diversification techniques affect the set of ROP gadgets
that is available to an attacker. We show that a small popu-
lation of diversified variants is sufficient to eliminate 90-99%
of ROP gadgets across a collection of real-world applications.
Finally, we observe that the number of remaining gadgets
may still be sufficient for an attacker to mount an effective
attack regardless of the presence of software diversity.

CCS Concepts

eSecurity and privacy — Systems security; Malware
and its mitigation;

Keywords

software diversity; compiler transformations; evaluation; code
reuse attacks; return-oriented programming (ROP)

1. INTRODUCTION

The proliferation of mass-market software targeting a sin-
gle instruction set architecture (ISA) creates security risks: a
vulnerability in an application represents a common avenue
of attack against all instances of that application [14, 16].
The consequences and impact of such risks have been repeat-
edly observed through well-known attacks such as the Mor-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SPRO’16, October 28 2016, Vienna, Austria
© 2016 ACM. ISBN 978-1-4503-4576-7/16/10. .. $15.00
DOL: http://dx.doi.org/10.1145/2995306.2995309

15

Daniel M. Kelly
The Johns Hopkins University
Applied Physics Laboratory
daniel.m.kelly@jhuapl.edu

Andrew S. Gearhart
The Johns Hopkins University
Applied Physics Laboratory
andrew.gearhart@jhuapl.edu

ris worm, Nimda, and Conficker—malware that collectively
spans two decades. This existing hardware and software
“monoculture” [16] stands in marked contrast to biological
development. Scientists now understand the importance of
diversity to a species’—or even to an entire ecosystem’s—
health and survival against natural catastrophes and even
targeted eradication [14,39]. Applying these same princi-
ples to software may reap similar dividends: a successful
attack impacts only a subset of the instances of a vulnerable
application. This idea is similar to herd immunity in epidemi-
ology [19] where a portion of the population (application
instances) is immune to an infection (exploit). Ideally, a
given exploit will only be successful against a single applica-
tion instance even if the underlying vulnerability is shared
by many instances.

Such a scenario decidedly shifts the balance of power in
cybersecurity. Instead of a compromise-once, compromise-
everywhere model where exploits are commodities, exploits
become unique to each application instance. As a result,
attacks must become more targeted to combat their increased
cost. Moreover, existing tiers of attackers (e.g., nuisance
attackers that exploit known vulnerabilities [17]) will be
eliminated due to the lack of reusable exploits.

The concepts underlying software diversity trace their
roots to fault tolerance. Fault-tolerant systems typically use
diversity and redundancy to achieve reliability. Diversity
minimizes the likelihood that multiple implementations of
a given component will produce an erroneous result [2]. Re-
dundancy masks independent errors in these components,
typically via a voting mechanism. Both techniques—but
particularly diversity—have also been suggested to reduce
the cybersecurity risks of a software monoculture. Seminal
work [9,14] led to a wide variety of approaches that introduce
diversity into various stages of the software life cycle from
source code obfuscation to ISA randomization.

Despite its potential, software diversity is not a cyberse-
curity panacea [28]. For software diversity to be effective, it
must significantly increase the cost to the adversary of con-
ducting a cyber attack. Exploits that rely on fixed character-
istics of a binary such as particular sequences of instructions
are likely to be impacted by various diversity techniques. For
example, disparate implementations of the same application
may not share vulnerabilities even if each implementation
contains unsafe memory handling. Obfuscated or optimized
code may interfere with the exploit, possibly causing the

application to crash. Even if a vulnerability is shared among
application variants, attackers must exert additional effort to
adapt exploits to each unique variant. Such work increases
the cost of cyber attack and increases the probability of
detection, serving as a deterrence to attackers.

A recent survey paper by Larsen et al. [25] highlights a
number of issues related to the efficacy of software diver-
sification techniques. First, many security evaluations are
qualitative and based on logical argument. Existing quan-
titative metrics, such as entropy, have not been shown to
be correlated with the cost to an adversary. Larsen et al.
specifically call for the creation of methodologies to evaluate
the impact of diversity techniques. Our work is an initial
step in this direction, as we explore a quantitative way to
measure the variation in the building blocks used by attackers
to construct code reuse attacks.

A gadget is the building block of a ROP attack, a class of
code reuse attacks designed to circumvent executable space
protection [33]. Executable space protection allows a memory
page to be either writable or executable but not both at the
same time. Successful reuse of an exploit against diversified
application variants requires all variants to share the same
code snippets used in the ROP attack. Therefore, we provide
a quantitative analysis of the effect of diversity techniques on
the percentage of ROP gadgets common to multiple variants.

Our analysis focuses on the use of a diversifying compiler
to automatically generate unique, but functionally identical,
versions of an application. Unlike an ordinary compiler that
is deterministic, a diversifying compiler is not expected to
produce the same output when presented identical input [15].
For example, it need not eliminate dead code or, more pre-
cisely, probabilistically decides when to remove dead code.
In addition, a diversifying compiler is free to introduce non-
functional code such as NOPs and explore various orderings
of instructions and basic blocks [14]. Different register allo-
cation strategies, memory layouts, and optimizations (e.g.,
loop unrolling) all introduce variance in the executable [25].

Although one concern is that such variability in the output
executable will not guarantee runtime or size optimality, a
small loss in optimality is likely tolerable if the resulting
variance significantly increases the cost to an attacker. Even
optimizing compilers rarely have sufficient information to
achieve optimality for all inputs. As performance is often
the deciding factor when determining when to deploy new
security techniques (adoption often requires the overhead
to be less than 5-10% [38]), the performance overhead of
software diversity techniques has been well-studied [25, Table
IIT]. Hence, we focus on the security impact of software
diversity techniques. Furthermore, diversity shows promise
against classes of attacks (e.g., side channels) that are not
addressed by traditional cyber defense techniques.

The contributions of this paper are as follows.

e We define a novel approach to measure ROP gadgets
shared across a set of diversified application variants.
Our bag of gadgets metric addresses diversity’s impact
even in the presence of attack techniques that dynami-
cally discover available gadgets (e.g., JIT-ROP [37]).

e We use two quantitative approaches, Survivor [18] and
bag of gadgets, to measure ROP gadgets shared across a
set of diversified application variants. These approaches
represent the amount of prior knowledge available to an
attacker: no prior knowledge of the target instance of an
application and an attacker who knows the existence of

16

gadgets but not necessarily their location in the target
instance.

e We apply diversification techniques to a commonly-
used set of utilities (the GNU core utilities) to evaluate
the impact of diversity to the ease of constructing a
successful ROP attack.

e We show that the diversity techniques that we studied
reduce the common set of gadgets by an order of mag-
nitude, even for small population sizes. Nevertheless,
the effectiveness of these techniques quickly plateaus,
as some gadgets are common to all variants.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of ROP attacks and address space
layout randomization (ASLR) as a current defense against
these attacks. Section 3 provides an overview of software
diversity, specifically compiler-based diversity techniques.
Section 4 explores the impact of these techniques to ROP
gadgets. Section 5 discusses these results and their implica-
tions to the premise of software diversity. Section 6 contrasts
our work with prior efforts in this area. We conclude and
describe future work in Section 7.

2. RETURN-ORIENTED PROGRAMMING

A buffer-overflow exploit allows an attacker to redirect the
flow of execution by overwriting a return pointer beyond the
bounds of a buffer. In its most basic form, this exploit is
the premise for a code-injection attack, wherein the attacker
inserts malicious code into an executable and redirects the
control flow so that the injected code is executed. In response
to such attacks, executable space protection was introduced,
whereby each page of memory is marked as either writable or
executable, and any attempts to execute machine code on a
page marked non-executable will result in an exception and,
in most cases, immediate termination of the program. Thus,
executable space protection makes it difficult for an attacker
to execute injected code, inspiring the development of a
new class of attacks, including return-oriented programming
(ROP).

ROP attacks forego the idea of code injection entirely,
choosing to focus on the reuse of existing machine code
to achieve the desired result. The core component of a
ROP attack is the “gadget,” a sequence of instructions that
occurs immediately before a return instruction. A ROP
gadget is a sequence of bytes, terminated by a byte that
represents a return, that can be interpreted as instructions
and parameters (e.g., registers or immediate values). Unlike
a code-injection attack, where the attacker utilizes their own
injected exploit, ROP attacks compromise the application by
executing a “chain” of gadgets built from program and library
code. Because control can be redirected to any arbitrary
byte in memory, ROP gadgets need not comprise instructions
from the originally compiled code. Therefore, any pattern
of bytes can be executed if it lies in executable memory and
decodes to valid instructions [33]. Such occurrences are likely
more frequent on ISAs with variable-length instructions and
relaxed instruction alignment, such as x86.

There exist a number of tools able to extract useful ROP
gadgets from target binaries. Some of these are capable of
compiling the attacker’s code directly into a chain of gadgets,
eliminating the need for the attacker to manually search
through a list of gadgets to assemble the payload. Exam-

ples of such tools include ROPgadget,’ ROPC,? and Q [34].
Thus, the cost to the attacker to construct a ROP attack
has decreased, heightening the need for effective defensive
measures.

Address space layout randomization (ASLR) has arisen
in recent years as a potential solution to ROP attacks. The
basic function of ASLR is to randomize the locations in mem-
ory at which each binary is loaded. As the use of gadgets
requires knowledge of specific memory addresses, the ran-
domization of memory layout was believed to be a reasonable
means of inhibiting the construction of ROP chains. Unfor-
tunately, ASLR is traditionally coarse-grained, meaning that
the base address of the executable, stack, heap, and libraries
are randomized but the leak of a single memory address com-
promises its security because objects appear at a fixed offset
from the base address. Attackers may rely on invariants (e.g.,
fixed offsets for objects from the base address) to minimize
the effort required to compromise multiple instances from a
single exploit.

Recently, the effectiveness of ASLR against ROP attacks
has come into question, with the emergence of just-in-time
code reuse demonstrating that, given the occurrence of a
memory disclosure vulnerability, it is possible to dynamically
construct ROP chains for a program with ASLR [12, 33, 37].
Snow et al. [37] demonstrate that even fine-grained ASLR
that randomizes individual objects independently (e.g., mem-
ory addresses and code) cannot prevent code reuse attacks in
the absence of memory safety. Techniques such as Execute-
no-Read (XnR) [3] or ISA randomization [4,21] that negate
an attacker’s ability to read arbitrary memory are currently
the best defenses against this type of attack. We explore the
implications of just-in-time code reuse to software diversity
in Section 5.

3. SOFTWARE DIVERSIFICATION

The concepts underlying software diversity apply to the
entire software development life cycle (Figure 1). For ex-
ample, safety-critical systems may use design diversity and
redundancy to achieve reliability. Such techniques are too ex-
pensive for many applications because they require multiple
implementations from a common specification [1]. Moreover,
care must be taken to ensure that faults occur independently
because the number of coincident failures has been shown
to be higher than expected from an assumption of indepen-
dence [23]. At the source code level, different language con-
structs can be used to diversify aspects of an implementation.
For example, the selection of a particular execution path can
be implemented via a multiway branch (e.g., switch state-
ment) or series of conditional expressions (e.g., if...else
statements). Template metaprogramming can obfuscate ap-
plications automatically [29]. Compilers that intentionally
modify their object code so each executable is unique are
known as diversifying compilers [15]. Targeting a machine
language unique to a particular execution environment is
known as ISA randomization [4, 21].

This paper focuses upon diversification techniques that
can be applied during compilation and linking. Targeting
this phase of the application life cycle has a number of
advantages, including reuse; existing compiler support for
optimization, which minimizes the performance impact of

"https://github.com/JonathanSalwan/ROPgadget
Zhttps:/ /github.com /pakt /ropc

Design

Source Transformation]
1

Implementation Source Code

Diversifying Compiler

AST IR

ISA Randomization

1

1

1

!

Machine r I
Lang Execution !
1

1

Figure 1: Opportunities for software diversity at var-
ious stages of the software development life cycle.
The abstract syntax tree (AST) and intermediate
representation (IR) are data structures used in the
compiler.

some diversification techniques and aids the implementation

of new diversity strategies; and whole program diversifica-

tion. Applying diversification to other phases of the software
life cycle has other advantages and disadvantages that are

discussed elsewhere [24].

Compiler- and linker-based diversity techniques permit

a broad number of different transformations, ranging from

the instruction to program level. A brief description of the

granularity of these classes of transformations and concrete
examples of each are as follows. For more details, we refer

the reader to Larsen et al.’s taxonomy [25].

Instruction These transformations operate within a basic
block, a sequence of instructions with a single entry and
exit. Changing or permuting instructions breaks fine-
grained code reuse attacks, assuming that adversaries
lack knowledge of the implementation details (e.g., via a
memory disclosure vulnerability). Example transforma-
tions at this level include the substitution of equivalent
instructions, reordering instructions, register allocation
randomization, and garbage code insertion. Substi-
tuting equivalent instruction sequences and garbage
code insertion theoretically allow an infinite number
of variants although both may negatively impact the
application’s execution time and memory footprint.

Basic Block The order of basic blocks within a function
may be permuted freely in conjunction with updating
the addresses of branches and jumps. While there is
a lower bound on the number of basic blocks within a
function, basic blocks may be split to create additional
opportunities for reordering. Branch functions and
the insertion of opaque predicates that contain values
known to the compiler but are difficult to deduce stati-
cally obfuscate the call graph and also hinder reverse
engineering.

Loop Loops may be unrolled, partially or fully. When com-
bined with the prior transformations, unrolled loop
iterations may obfuscate the underlying computation

KLOC
60.1

Binaries

103

Version
8.25

Data set
GNU coreutils

Inst. (k)
700.0

Table 1: Statistics for the evaluation data set. The
final column, “Inst. (k),” indicates thousands of in-
structions in the binaries.

(particularly in combination with other diversity tech-
niques) and hinder side channel attacks.

Function These transformations vary the number and in-
vocation conventions of functions. Specific techniques
include stack layout randomization, altering the num-
ber and order of parameters, inlining and outlining,
and control flow flattening.

Program These transformations randomize aspects of the
entire program, including reordering functions in the
executable, instruction set randomization [4,21], data
randomization, and randomizing library entry points.

Existing systems that implement some of these transforma-

tions are the multicompiler [18] and Obfuscator-LLVM [20].

Both systems are based on LLVM [27]. We use the trans-

formations provided by the multicompiler and Obfuscator-

LLVM as the basis for our study, as both are open source

projects that are publicly available.

4. EVALUATING DIVERSIFIED POPULA-
TIONS

This section describes our evaluation of the effectiveness of
various diversity techniques. We start with an overview of our
data set; describe the specific diversity techniques used in our
study, our approaches to gadget counting, and experimental
setup; and present our analysis of gadget survival for various
diversity techniques.

4.1 Data Sets

We selected a single large data set for evaluation: the GNU
core utilities.® Table 1 lists basic statistics about the data
set. Thousands of lines of code (KLOC) was computed using
David A. Wheeler’s “SLOCCount” (version 2.26).*

The GNU core utilities is a set of common tools found on
Unix-like operating systems. We selected the GNU core utili-
ties as our data set for a variety of reasons. First, the source
code is freely available, which is essential when evaluating
compiler-based diversity techniques. Second, open source
software supports reproducibility of our research. Third, the
GNU core utilities comprises a large number of tools (i.e., ap-
plications). We use the variety of applications to investigate
different trends across the collection, noting that individual
applications provide only a single data point in our analysis.

For each diversification technique, we compiled 100 diversi-
fied variants of the binaries in the data set. Each diversified
variant was compiled using a different random seed, targeting
x86-64, and was dynmically linked. To compare diversified
variants, Floyd’s sampling algorithm [5] was used to select
4000 unique combinations of variants from the (120) possibil-
ities. This approach provides a uniform number of samples
(i.e., an even random sample) for our analysis even though
the total number of possible combinations varies significantly

Shttp://www.gnu.org/s/coreutils
“http://www.dwheeler.com/sloccount/

18

with the number of binaries being compared. The upper
bound of 4000 samples maximizes the number of samples
given the 100 available variants for each binary.

When applicable, our baseline for comparison is the same
binary compiled by the multicompiler but with all diversifi-
cation techniques disabled (i.e., LLVM 3.5).

4.2 Diversity Techniques

More details about the specific diversity techniques used
in our evaluation appear in the following descriptions.
NOP insertion A NOP (the mnemonic for “no operation”)
is an instruction that the processor fetches and executes
without modifying the register file or memory. The
NOP insertion strategy [18] probabilistically inserts 0
or 1 NOPs prior to the current instruction. The type
of NOP inserted may vary from the x86 instruction
with the NOP mnemonic (i.e., nop) to instructions that
preserve the processor state (e.g., mov esp, esp). In
our experiments, there is a 50% probability of NOP
insertion.

Instruction substitution In many cases, arithmetic oper-
ations can be expressed via different operations. For
example,

b+c=b—(—c)=—(=b+(—0))

When possible, an equivalent instruction sequence is
substituted for binary and boolean operations on in-
tegers. A complete list of the available substitutions
appears in the Obfuscator-LLVM documentation.

Schedule randomization This transformation randomizes
the instruction schedule. Conceptually, dependencies
among instructions form a directed acyclic graph (DAG).
With instruction schedule randomization, an arbitrary
instruction is selected from those that are eligible to
appear next, and the order of the remaining instruc-
tions is updated accordingly. In our experiments, 50%
of the instruction schedule is randomized.

Bogus control flow This transformation modifies the con-
trol flow graph (CFG) of a function by adding a basic
block prior to the current basic block. The new basic
block contains an opaque predicate [10] that is difficult
to deduce statically and guards a jump to the original
basic block. For our experiments, bogus control flow is
applied to all functions but the probability of inserting
an opaque predicate is 30%.

Control flow flattening This transformation obscures the
call graph by replacing direct jumps between basic
blocks with indirect jumps through “jump tables” [26].
This obfuscation conceals the original structure of the
program because all basic blocks appear at the same
level and the execution path is controlled by a single
variable.

Function shuffling This transformation permutes the or-
der of functions in the object code generated by the
compiler. Although global permutation across the en-
tire executable is possible, our experiments use function
shuffling on a per-object file basis.

4.3 Approaches to Gadget Counting

A ROP gadget is a sequence of bytes in the program
that can be interpreted as valid, unprivileged, non-branching
instructions that terminates with a return instruction. A
challenge in our evaluation is how to compare ROP gadgets

across a population of variants. We consider two different

approaches to determine gadget identity. Identical gadgets

in multiple binaries are valuable for attackers because these
gadgets are invariant, having survived diversification.

Survivor [18] This metric considers a gadget’s sequence of
bytes and its program offset as part of the comparison.
This metric assumes that a gadget is only useful to an
attacker when the gadget has the same functionality
at the same address. Otherwise the attack must be
modified for use against other binaries.

Bag of gadgets This metric only considers a gadget’s par-
ticular sequence of bytes in regard to uniqueness. If
the same gadget appears in two different binaries, even
at two different memory locations, it is considered a
surviving gadget, available for use by an attacker.

Because this metric does not consider memory loca-
tions, it represents the maximum set of gadgets avail-
able to an attacker with prior knowledge about an
instance of an application. Attacks that require a par-
ticular type of ROP gadget or a number of ROP gadgets
of the same type will be foiled if these gadgets do not
exist in the binary.

When comparing gadgets, we ignore intervening bytes that

are NOPs, as NOPs do not affect the execution of the gadget.

For both metrics, the intersection of gadgets between all
possible diversifications of a particular program or library are
the core surviving gadgets, available to an attacker despite
diversification. When identifying gadgets in a binary, we
also only consider the binary’s executable segments that are
loaded into memory. Unless otherwise noted, we use the
survivor metric as our primary evaluation metric.

4.4 Experimental Setup

We statically identify gadgets in Executable and Link-
able Format (ELF) binaries by sliding a window across the
binary’s executable memory and disassembling the bytes
within that window. This approach to identifying gadgets is
similar to the Galileo algorithm [35]. Our approach handles
misaligned parses of the original binary code snippet (such
misaligned parses can serve as optimizations for a ROP at-
tack [6]), and the counts of gadgets in the binaries include
those resulting from misaligned parses.

The choice of the window size affects the number of ROP
gadgets that will be identified. To determine an appropriate
window size, we identified the total number of ROP gadgets
across a variety of window sizes. Figure 2 shows the percent-
age of total ROP gadgets identified for each window size,
assuming that a window size of 50 bytes is essentially an
exhaustive search. As evidenced by the figure, the greatest
density of gadgets appears within a relatively small window
(2-11 bytes), but there is a long tail of ROP gadgets found
for increasing window sizes. This tail is largely the result
of including additional instructions with an existing ROP
gadget. In practice, the number of side effects (e.g., register
clobbers) increases with more instructions, making very long
gadgets less likely to be included in a ROP chain.

To be conservative, we selected a window size that iden-
tifies 90% of all gadgets found—25 bytes for the GNU core
utilities. This sliding window is larger than the default for
other gadget scanners (e.g., ROPgadget and ROPC) so we
feel that our choice for this parameter is conservative. How-
ever, larger gadgets are more likely to be “broken” by changes
in the binary; the implications of this statement are discussed

19

=)

% of All Gadgets
o - ~N w S~ v o ~N oo o

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
of Bytes

Figure 2: Percentage of ROP gadgets for increasing
window sizes on the GNU core utilities.

in Section 5. In addition, prior research assumes a maxi-
mum gadget length of 5 instructions [31] or notes that most
gadgets can be constructed from a comparable number of in-
structions [8]. With a mean number of bytes per instruction
of 3.85 and a median value of 3 (Figure 3), our window size
significantly exceeds this search depth.

4.5 Gadget Survival With Diversification
4.5.1 Number of Gadgets

In some cases, diversity techniques may actually increase
the number of gadgets in a binary [37]. All the diversification
techniques studied in this work were found to increase the
overall number of unique gadgets across the population of
diversified variants. As shown in Figure 4, the mean increase
in gadgets ranged from 1% for function shuffling to more
than 100% for control flow flattening. In the case of schedule
randomization and instruction substitution, the new gadgets
are primarily the result of a greater variety of instructions
seen immediately before the function return. The situation is
similar, if not immediately obvious, for control flow flattening
where the order of the basic blocks can introduce new gadgets
prior to the function return.

In addition to the change in the number of gadgets, the
spread of the distribution indicates how uniformly the diver-
sity technique applies to different binaries. Small spreads
(e.g., function shuffling) indicate little variation, which is
beneficial for our security analysis and obscures the presence
of a diversity scheme to an attacker. Larger spreads indicate
greater variability and may present a greater challenge to
attackers due to the dissimilarity among variants.

180000
160000
140000
120000
100000
80000
60000
40000
20000
0

Frequency

1 2 3 4 5 6 7 8
Instruction length (bytes)

Figure 3: Histogram of bytes per instruction for the
GNU core utilities.

0.16 — Func. Shufflin
0.14 —_— Rand. Schedulin
—_— NOP Insertion
0.12 —_— Instr. Substitution
0.1 —_— Bogus Ctrl. Flo
2 Ctrl. Flow Flattenin
2 0.08
[
S 006
0.04
0.02
O —
-20 0 20 40 60 80 100 120 140

% Difference in Gadgets

Figure 4: Change in number of gadgets across all
GNU core utilities. Each line is a kernel density es-
timate of the probability density function; the band-
width of the kernel is estimated using Silverman’s
rule of thumb [36]. In many cases, the distributions
are close to normal distributions.

4.5.2 Gadget Survival

A more useful measure than the change in the number of
gadgets is the effectiveness of each strategy at minimizing the
surviving gadget set. We hypothesize that an attacker’s effort
increases as the common set of surviving gadgets decreases.
Ideally, two diversified binaries should have absolutely no
gadgets in common, and an attacker would have to build a
new ROP chain for each diversified binary.

Figure 5 displays the percentage of surviving ROP gadgets
across our even random sample of variant combinations with
sizes from 2 to 16 binaries using the survivor algorithm to
count gadgets. For each diversity technique, Figure 5 graphs
the mean of the median values of surviving gadgets for each
binary in the GNU core utilities. Of the strategies evaluated,
we found control flow flattening to be most effective. Com-
paring two binaries, 1% survived on average, which is the
core surviving set of gadgets. All diversification techniques
except function shuffling eventually achieve a survival rate
of less than 5% for larger sets of binaries. Function shuffling
and schedule randomization improve rapidly from 2—4 bina-
ries, starting at a 26% and 9% survival rate but eventually
converging to a 8% and 3% survival rate.

The two primary characteristics of note in Figure 5 are
the rates of decrease and the final percentage of surviving

25

Instr. Substitution

NOP Insertion
Bogus Ctrl. Flo
Ctrl. Flow Flattenin;

- N
@]

-
o

% of Surviving Gadgets

2 4 6 8 10 12 14 16
of Binaries

Figure 5: Median gadget survival across the GNU
core utilities using the survivor metric.

20

gadgets. Interestingly, most diversity techniques do not sub-
stantially increase their performance when considering larger
sets of binaries. This result suggests that the output from
most diversity techniques is uniformly distributed among
their possible range of values; otherwise, one would expect
the core surviving set to decrease with additional binaries.
Also remember that each median point is selected from 4000
samples among the (120) variants so the uniformity of the dis-
tribution may only be applicable when considering a larger
number of combinations. Conversely, both schedule ran-
domization and function shuffling require several binaries to
maximize effectiveness. Initially, each retains a much higher
percentage of surviving gadgets than the other techniques;
however, schedule randomization improves rapidly and out-
performs instruction substitution for groups with 4 or more
binaries. We posit that the cause is a greater number of
permutations in the instruction schedule than available arith-
metic identities for integer and boolean operations; integer
heavy benchmarks might have significantly different results
than the GNU core utilities. Function shuffling converges
to approximately 8% percent, a value over twice that of the
other techniques. Thus, function shuffling is not as effec-
tive as the other techniques at decreasing the percentage of
surviving gadgets.

Figure 6 displays the percentage of surviving ROP gadgets
across our even random sample of variant combinations with
sizes from 2 to 16 binaries using the bag of gadgets approach
to count gadgets. Remember that this metric does not con-
sider the gadget’s location in the binary and represents the
percentage of gadgets that can be found by an attacker when
adapting an existing ROP attack to a variant. The difference
in effectiveness as compared to the survivor metric (Figure 5)
is striking. NOP insertion outperforms the other diversity
techniques by a wide margin and eventually only 10% of
gadgets remain common to multiple variants. Function shuf-
fling performs very poorly, leaving more than 80% of gadgets
common to all variants.

The bag of gadgets metric provides some unique insights
into the effectiveness of the diversity techniques. First, even
straightforward changes do have an effect on the ROP gad-
gets present across variants. An initial expectation that
function shuffling would leave all gadgets present in all vari-
ants (albeit in different locations) is dispelled. Instead, we

Func. Shuffling
Ramd—Schedutin
Instr. Substitution

NOP Insertion
Bogus Ctrl. Floy

Ctrl. Flow Flattening

80

70

60

% of Surviving Gadgets

of Binaries

Figure 6: Median gadget survival across the GNU
core utilities using the bag of gadgets metric.

Func. Shufflin
Rand. Schedulin
Instr. Substitution

i

N N
o %]

-
[

% of Surviving Gadgets

of Binaries

Figure 7: 5th and 95th percentiles (dotted lines) for
gadget survival across all GNU core utilities using
the survivor metric. The solid line is the median sur-
vival rate. Additional diversity techniques are omit-
ted due to their similar performance to that shown
in Figure 5.

see that some gadgets cross function boundaries, which ac-
counts for the reduction in surviving gadgets. Techniques
like NOP insertion may also prove reasonably effective at
hindering current approaches to gadget scanning. Much of
the reduction in the percentage of surviving gadgets for NOP
insertion is due to the additional NOPs bloating the size
of the gadget so it exceeds the search window size. While
it would be simple to adapt existing techniques to handle
NOP instructions, inserting a sequence of instructions that
preserves the processor state would be more difficult to han-
dle statically by a gadget scanner. Second, all techniques
leave roughly an order of magnitude more gadgets in the
binary than suggested by the survivor metric. These gadgets
are present in all variants, but their location differs in each
binary. Hence, they are available to an attacker that can read
memory (e.g., via an information disclosure vulnerability).
We discuss the implications of this result in Section 5.
Figure 7 shows the 5th and 95th percentiles for gadget
survival rates for the GNU core utilities. This graph is useful
to identify the range of the distribution and ensure that there
are not significant outliers that perform significantly worse
than suggested by the prior graph. The general trend is
similar to the median across the data set, but in some cases,
there is a large range in the effectiveness of the diversity
techniques for different applications (e.g., function shuffling
for 2-7 binaries). Interestingly, we see that the range between
the 5th and 95th percentiles narrows with more binaries. This
result suggests that larger populations have more consistency
with regard to the effectiveness of a given diversity technique.
Figures 5 and 7 are both normalized to the number of
gadgets originally available. An obvious question is how
many actual gadgets survive. If the original binary contained
only a few gadgets, then a 1% survival rate gives an attacker
very few gadgets with which to craft an attack. Figure 8
shows a histogram of the number of gadgets in the original,
undiversified binaries. As indicated by the figure, a 1%
survival rate leaves an attacker with only a small set of
gadgets at the same memory locations. Many attacks against
common applications require only a handful of unique gadgets

21

%0 Histogram of Gadgets

20 |-

15 |-

H_I_H'l_ln_mrl'l

500 1000 1500 2000 2500 3000
Gadgets

Frequency

Figure 8: Histogram of the raw number of gadgets in
the GNU core utilities. The data is collected from
the undiversified binaries (median = 842 gadgets,
u=1049.2, o = 525.8).

in the payload (approximately 10-20) [31]. Our analysis
suggests that these diversity techniques are on the threshold
of preventing these attacks outright due to the minimal
number of surviving gadgets. An attacker is left with the
challenge of adapting their payload to use these surviving
gadgets, which may not always be feasible.

Furthering this initial analysis, we consider the number
of opportunities for each diversification technique. Figure 9
considers function shuffling and shows the correlation be-
tween the number of functions and the number of surviving
gadgets for the samples with two variants. A slight negative
correlation exists between the values. A negative correlation
is expected because more functions increase the number of
permutations for function shuffling, which in turn decreases
the likelihood that two variants will share the same permu-
tation. In fact, for fewer than 100 functions, at least two
variants must share the same initial function, but this overlap
is not guaranteed when there are more than 100 functions
in the binary. This trend suggests combining function shuf-
fling with a complementary diversity technique like function
outlining, which extracts new functions from portions of
existing functions, because function outlining increases the
diversification opportunities for function shuffling.

Function shuffling represents one extreme for our diversity
techniques, as it is relatively coarse-grained, and the number
of unique variants is limited to the number of permutations
of the functions. At the other extreme is NOP insertion

w BN
« o n

o

w
o
=

e Iy
¥ e el

o

Correlation Coef. =-0.1509

% of Surviving Gadgets
N
&

[N

o v ouwun

80 100 120 140

of Functions

160 180 200

Figure 9: Correlation between the number of func-
tions and surviving gadgets (survivor metric). The
best fit line is the linear least squares regression.

x x NOP Insertion|
25 x Rand. Schedulin

Correlation Coef, =-0.48264

% of Surviving Gadgets
&

20000

10000 12000 14000
of Instructions

0 x
4000 6000 8000 16000 18000

Figure 10: Correlation between the raw instruction
count and surviving gadgets (survivor metric) for
the GNU core utilities. The best fit line is the linear
least squares regression.

because NOPs can be inserted between most instructions
without modifying the program’s functionality. Figure 10
shows the correlation between the raw instruction count in
the original binary and the number of surviving gadgets.
Again we witness a slight negative correlation. Even a single
NOP can significantly reduce the surviving gadgets when
inserted at the beginning of the text section although such
a technique would be simple for an attacker to circumvent.
Interestingly, the effectiveness of schedule randomization
has a much stronger correlation with the raw instruction
count. Further analysis is needed to determine the underlying
cause, but an increased number of instructions allows more
permutations in the instruction schedule in many cases.

We created a visualization to understand the relationship
between the locations of gadgets common to multiple variants
(Figure 11). In most cases, the surviving gadgets reside at
the beginning of the binary where the diversity technique has
had little opportunity to influence the output. On occasion,
techniques like function shuffling will, by chance, align the
same functions late in the binary, creating a zone of surviving
gadgets deep in the binary.

This trend is clearly visible in Figure 12: surviving gadgets
are fairly uniformly distributed in the presence of function
shuffling. In comparison, gadgets that survive NOP insertion

@88
o0 8

®s

et T I

Increasing Memory Address -

Figure 11: Gadget locations in two variants (red,
blue) of dirname with surviving gadgets (survivor
metric) circled in green. Function shuffling was
used to diversify the two variants. This visualiza-
tion shows the executable memory segments of the
binaries normalized to the start of the first gadget
(with some padding for visual clarity) and aligned on
64-byte addresses. Each column represents 64 bytes
of memory (e.g., the first column shows memory ad-
dresses 0—63).

22

Func. Shufflin

Instr. Substitutiol

Bogus Ctrl. Flo
Ctrl. Flow Flatteninv%
NOP Insertion

Rand. Schedulin
n

Gadget Density

0.4 0.6 0.8 1

Location in Binary

Figure 12: Location distribution of the gadgets that
survive diversification (survivor metric). Each line
is a kernel density estimate of the probability density
function; the bandwidth of the kernel is estimated
using Silverman’s rule of thumb [36].

typically appear at the beginning of the binary when there has
been fewer opportunities to alter the sequence of instructions.
Techniques like bogus control flow that may insert a new
basic block at the beginning of a function have an even
greater impact on the location of gadgets, as the new basic
block likely shifts the location of all later basic blocks and
functions.

While it is logical to consider the combination of various
diversity techniques, preliminary analysis with the survivor
metric indicated that more effective techniques dominate
other techniques, causing the combinations to perform simi-
larly to the more effective technique on its own and not lead-
ing to substantial improvement. Hence, we do not consider
the various combinations of these techniques here because
the results are similar to those already presented.

S. DISCUSSION

Given a sufficient population size (e.g., more than 5 vari-
ants), all the diversity schemes reduce the common set of
gadgets by at least an order of magnitude for the survivor
metric (see Figure 5). However, the percentage decrease
is dependent on the number of gadgets present in the vari-
ants. As previously stated, we chose a conservative search
depth when identifying gadgets, but larger gadgets are more
likely to be “broken” by diversification techniques, as there
are typically more opportunities for diversification (at least
for instruction-level techniques). To better understand the
impact of the window size on our results, we compared the
median gadget survival rate for the GNU core utilities with
a sample size of 5 variants and window sizes of 10 and 25
bytes. Figure 13 compares the effectiveness; note that the
values for 25 bytes as the same as that shown in Figure 5 for
a sample size of 5 binaries. As evidenced by the figure, the
change in the survival percentage is only minimally affected
by the window size.

Unfortunately, the order of magnitude reduction that we
previously reported in the number of surviving gadgets may
not be sufficient to stop code reuse attacks. In many cases,
the payloads of existing attacks only require a handful of
gadgets—roughly comparable to the number that survive
the diversity techniques that we studied. Nevertheless, it
is encouraging that the effectiveness of some diversity tech-
niques improves with larger binaries (see Figure 10). This
improvement, though, does not translate into a reduction in
the absolute number of surviving gadgets. Figure 14 shows

T
10 bytes mmm—

% survivors

Fune, g ! R, i
U Shuftjpg NOPInseroy e Sf"euurmgsogw it iy, - Flow F’alfenm’:" Sbsttygigy

Figure 13: Comparison of the survival percentage
for window sizes of 10 and 25 bytes (survivor metric)
for samples of 5 binaries.

the correlation between the number of raw instructions and
raw count of surviving gadgets, and it indicates that the
number of surviving gadgets is essentially constant. Hence,
the effectiveness of the diversity techniques that we studied
appears to be on the threshold of preventing ROP attacks
outright due to an attacker’s inability to identify a set of
gadgets that survive diversification. This conclusion changes
if one considers the bag of gadgets metric, which shows a
significant increase in the number of surviving gadgets as
compared to the survivor metric. If an attacker can read
arbitrary memory (e.g., via an information disclosure vulner-
ability), then it will be simple to adapt an existing attack to
a new variant. Many gadgets are common across variants;
the attacker need only discover their exact location.

Our analysis also suggests that a larger population size is
unlikely to change this situation. The tail of our effectiveness
distributions shows little change as the population increases
from 6-16 variants (Figure 5). In combination with the
raw number of surviving gadgets, this result casts doubt
on the security promises of large-scale software diversity.
Enough gadgets may survive diversification for an attacker
to construct exploits from those gadgets. Other researchers’
results (e.g., [31]) also suggest that some gadgets simply
cannot be diversified away; our results support this finding.

180 ¢ = NOP Insertion
« 160 * Rand. Schedulin
8 140 i - .
< -
& 120 Lo,
2 100 1 - Correlation Coef. =-0.12292
g 80 -
3 60 P . o
S 40 fa oty - Correlation Coef. =0.032678
E:3 ot LN BN LIPEPER =

20 FrRmer s e =%

0
4000 6000 8000 10000 12000 14000 16000 18000 20000

of Instructions

Figure 14: Correlation between the raw instruction
count and raw count of surviving gadgets (survivor
metric). The best fit line is the linear least squares
regression.

23

Of course, attackers are still left with what might be a
significant challenge. Is it possible to identify a priori those
gadgets that survive diversification? If the core surviving
gadgets are identifiable in some fashion, then attackers will
naturally adjust their techniques to target the gadgets that
are present in all variants. Although we did identify the
likely location of surviving gadgets that appear at the same
location in memory (see Figures 11 and 12), additional re-
search is necessary to identify other relationships among
these surviving gadgets that attackers will exploit.

Our approaches to gadget counting (see Section 4.3) do
not allow for semantically equivalent gadgets. For example,
a NOP may be represented as the NOP instruction or as
an instruction that preserves processor state. In addition,
instruction substitution may replace one arithmetic operation
with a sequence of instructions that have the same side
effects. Except for NOP instructions, we consider any changes
to the instruction comprising the gadget to “break” that
gadget, as it is no longer identical to the original. In the
general case, semantic equivalence is undecidable, but this
simplification potentially overstates the effectiveness of the
diversity techniques, particularly for schedule randomization
and instruction substitution.

Another open issue is just-in-time code reuse attacks. Snow
et al. [37] demonstrate a technique that repeatedly abuses
a memory disclosure vulnerability to map an application’s
memory at runtime, dynamically discovers available gad-
gets, and just-in-time compiles a target program as part
of the exploit. Their technique is resilient to fine-grained
diversity schemes including 1) function shuffling and basic
block reordering, 2) instruction substitution and register
randomization, and 3) schedule randomization. Moreover,
they assume that these diversity schemes are performed on
each execution of the application rather than being unique to
each instance of the application. In the absence of complete
memory safety, such attacks are difficult to prevent, but tech-
niques such as XnR and ISA randomization may mitigate
the immediate risks of memory disclosure vulnerabilities and
complement the compile-time diversification techniques that
we studied. In XnR [3], executable code pages cannot be read,
thus preventing code reuse attacks. ISA randomization tech-
niques that encrypt code pages [4,21,30,32] do not prevent
reading the code, but an attacker must break the encryption
scheme before a code reuse attack becomes feasible. Given a
sufficient key size and strong cipher, attackers are likely to
look elsewhere for ways to compromise the application. It
should also be noted that ISA randomization has a syner-
gistic effect with compiler-based diversity schemes. Without
the additional compile-time diversity, an attacker can easily
construct a code reuse attack because all instances of the
encrypted application are identical. That is, a successful
attack against one instance protected by ISA randomization
may be reused against other instances of the application
unless those instances have additional differences beyond the
encryption of code pages.

Our evaluation highlights some interesting opportunities to
quantify the security of various diversity schemes. As shown
in Figure 5, some diversity schemes are not affected by the size
of the population whereas other diversity schemes increase
in effectiveness as the population size increases. Techniques
such as function shuffling are dependent on the number of
functions in the application. Establishing strong theoretical

bounds or even empirical bounds on the effectiveness of
diversity techniques is an area for future work.

Finally, we do not consider the resistance of the various
diversity techniques to reverse engineering. Some techniques
like NOP insertion are likely trivial for an adversary to bypass.
In the worst case for the attacker, the inserted NOPs change
the location of the gadget in memory, but the (possibly
bloated) gadget remains present in the binary. The same is
generally true for function shuffling. The ideal diversification
scheme satisfies three objectives:

e attack resistance,

e reducing exploit reuse among diversified variants, and

e resistance to reverse engineering for vulnerability de-

tection and detection of the diversity details.

Our focus in this paper has been the second objective (i.e., re-
ducing exploit reuse), but our existing metrics do not address
the resistance of each technique to reverse engineering. We
believe that good diversity schemes should follow Kerckhoffs’
Principle [22]: i.e., the success of diversity should depend
only on the secret of a random seed (e.g., of the diversifying
compiler). Nevertheless, there is significant overlap between
diversity and obfuscation techniques, and the latter may be
beneficial to thwarting some attacks.

Threats to Validity

Our focus in this paper is specifically ROP gadgets, sequences
of valid, non-branching instructions that terminate with a
return instruction. However, ROP is not the only type of
code reuse attack—e.g., Bletsch et al. [7] show how to main-
tain malicious control flow without return instructions. Our
analysis does not consider additional types of gadgets. To do
so, we would need to expand our search to include instruction
sequences that end in a free branch (e.g., a return, jump,
or indirect call). These additional gadgets may significantly
alter our results, and it should also be acknowledged that
the evidence of additional gadgets suggests strongly that an
attacker has sufficient building blocks to construct an attack.

Finally, it should be noted that our results may not be
indicative of diversifying compilers’ success for larger, more
complex applications. While some diversity techniques im-
prove effectiveness for larger applications, the GNU core
utilities are much smaller than other common applications
such as office productivity suites or web browsers.

6. RELATED WORK

Larsen et al. [25] provide a systematic overview of software
diversity, highlighting opportunities to diversify software
and open challenges that exist in this field. In their words,
“the study of how diversity affects the adversary’s effort is
in its infancy” [25]. Our work is one of only a few studies
(e.g., [11,18]) that quantitatively evaluate the security impact
of diversity strategies.

Early work on the multicompiler evaluated the percentage
of gadgets that survive diversification. The Survivor algo-
rithm [18] looks for shared instruction sequences that end
with a free branch and appear at identical offsets within bina-
ries. NOP instructions that may appear in these sequences
are ignored, as they do not affect an attacker’s ability to ex-
ecute a code reuse attack. Our consideration of six diversity
strategies significantly expands upon the prior results [18]
that consider only the NOP insertion strategy. Like the prior
results, we find that a subset of gadgets survives diversifica-
tion of at least 12 variants, but unlike the prior results on

24

the SPEC CPU benchmarks, we find that a much smaller
set of binaries achieves maximum effectiveness.

Coppens et al. [11] examine matching the amount of code
shared among diversified variants. This metric is a quantita-
tive way to measure the effectiveness of diversity schemes,
but unlike our work, it does not directly relate to specific
classes of attacks (e.g., code reuse).

7. CONCLUSION

Our most striking conclusion is that the number of ROP
gadgets that survive diversification, appearing at the same
locations in multiple variants, is close to the threshold of that
required to construct a ROP attack. We find this number
essentially constant across the GNU core utilities, and our
result is similar to prior results that suggest some gadgets sim-
ply cannot be diversified away using existing techniques. By
itself, this result casts doubt on the effectiveness of stopping
code reuse attacks solely through existing software diversity
techniques. Moreover, if an adversary has an existing ex-
ploit for a particular variant, then our results also suggest
that only minimal effort is required to adapt that exploit to
another variant known to the attacker.

Nevertheless, these statements do not imply that software
diversity is without merit. Attackers without access to a
particular variant face a significant challenge of identifying
the common set of gadgets that are always available for an
attack. With only 1-10% of gadgets surviving diversification
at the same memory location, this task may be expensive,
error prone, and alert defenders of ongoing attacks via ap-
plication crashes or other failures. While our preliminary
investigation suggested little benefit in composing diversity
techniques, that conclusion is likely specific to the diversity
techniques—and possibly the data set—that we studied, as
some diversity techniques described in the literature do have
synergistic effects.

Future Work

Throughout the discussion of our results (Section 5), we iden-
tified several opportunities for future work. We summarize
these opportunities briefly before highlighting other exten-
sions to our work. First, additional research is needed to
establish theoretical bounds on the effectiveness of diversity
techniques. While we provide an empirical analysis in this
paper, our results might not be representative of all appli-
cations. Second, the interaction between various diversity
techniques when they are composed has received insufficient
attention in the literature to date. Third, given that some
gadgets appear to always survive diversification, is it possible
to identify these gadgets without access to variants from the
population as a whole? If an attacker can easily identify the
core surviving gadgets, then they will simply target these
gadgets to construct gadget chains, and diversity may not
be a serious impediment.

Beyond the aforementioned questions raised by our analy-
sis, there are a number of straightforward extensions to our
work. First, we considered six different diversification strate-
gies, but there are a variety of additional strategies that have
been previously described in the literature. One technique,
code layout randomization (i.e., basic block reordering), has
been used by a variety of systems [11,13,40]. Including code
layout randomization provides a common baseline between
our analysis and prior work. Second, a sufficient variety
of surviving gadgets are needed to construct a useful ROP

chain. Our work does not account for the different kinds of
of survivors, and whether or not enough flexibility survives
to mount an attack. Third, we examine only one architecture
(x86-64) and further analysis is needed to understand the
degree to which the unique characteristics of x86 impact our
results. For example, our analysis could be extended to other
architectures, such as ARM, where instruction encoding and
alignment is more rigid.

In addition to answering these questions, we envision the
research benefits of developing a small library to automate
much of the analysis performed in this paper. Such a library
allows other researchers to perform a comprehensive analysis
of additional diversification techniques and compare their
effectiveness with others that have been previously studied.
One potential drawback of the library is that it might help
attackers circumvent a diversification scheme, but its research
value appears clear.

Further, new metrics should be created to quantify the
security impact of various techniques as a function of other
statistics that are readily available (e.g., the number of in-
structions or functions in a binary). Significant work also
remains to understand the composition of diversification
techniques. For example, while function shuffling theoreti-
cally increases in effectiveness with the number of functions,
function inlining decreases the number of functions, which
eliminates opportunities for diversification. What combina-
tion of both techniques maximizes effectiveness? Despite the
variety of diversity techniques that exist, many questions re-
main about their effectiveness and practical implementation;
this paper is an early step in that direction.

8. REFERENCES

[1] A. Avizienis, M. R. Lyu, and W. Schutz. In Search of
Effective Diversity: A Six-Language Study of Fault-Tolerant
Flight Control Software. In Proceedings of the 18th
International Symposium on Fault- Tolerant Computing,
pages 15-22, June 1988.

A. A. Avizienis. The Methodology of N-Version
Programming. In M. R. Lyu, editor, Software Fault
Tolerance, chapter 2, pages 23-46. John Wiley & Son Inc.,
1995.

M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Niirnberger,
and J. Pewny. You Can Run but You Can’t Read:
Preventing Disclosure Exploits in Executable Code. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages
1342-1353, 2014.

E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer,

D. Stefanovic, and D. D. Zovi. Randomized Instruction Set
Emulation to Disrupt Binary Code Injection Attacks. In
Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS ’03, pages 281-289, New
York, NY, USA, 2003.

J. Bentley and B. Floyd. Programming Pearls: A Sample of
Brilliance. Communications of the ACM, 30(9):754-757,
September 1987.

A. Bittau, A. Belay, A. Mashtizadeh, D. Maziéres, and

D. Boneh. Hacking Blind. In 2014 IEEE Symposium on
Security and Privacy, pages 227-242, May 2014.

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang.
Jump-oriented programming: A new class of code-reuse
attack. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security,
ASTACCS 11, pages 30—40, 2011.

S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,

H. Shacham, and M. Winandy. Return-oriented
Programming Without Returns. In Proceedings of the 17th

2]

3]

(4]

[5

6

[7

8

25

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

[25]

[26]

ACM Conference on Computer and Communications
Security, CCS ’10, pages 559-572, 2010.

F. B. Cohen. Operating system protection through program
evolution. Computers & Security, 12(6):565-584, October
1993.

C. Collberg, C. Thomborson, and D. Low. Manufacturing
Cheap, Resilient, and Stealthy Opaque Constructs. In
Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
POPL 98, pages 184-196, 1998.

B. Coppens, B. De Sutter, and J. Maebe. Feedback-driven
binary code diversification. ACM Transactions on
Architecture and Code Optimization, 9(4):24:1-24:26,
January 2013.

L. Davi, C. Liebchen, A. Sadeghi, K. Z. Snow, and

F. Monrose. Isomeron: Code Randomization Resilient to
(Just-In-Time) Return-Oriented Programming. In 22nd
Annual Network and Distributed System Security
Symposium, NDSS 2015, February 2015.

L. V. Davi, A. Dmitrienko, S. Niirnberger, and A.-R.
Sadeghi. Gadge Me if You Can: Secure and Efficient Ad-hoc
Instruction-level Randomization for x86 and ARM. In
Proceedings of the 8th ACM SIGSAC Symposium on
Information, Computer and Communications Security,
ASTA CCS 13, pages 299-310, 2013.

S. Forrest, A. Somayaji, and D. H. Ackley. Building Diverse
Computer Systems. In Proceedings of the 6th Workshop on
Hot Topics in Operating Systems, pages 67—72, May 1997.
M. Franz. E Unibus Pluram: Massive-scale Software
Diversity As a Defense Mechanism. In Proceedings of the
2010 Workshop on New Security Paradigms, NSPW ’10,
pages 7-16, September 2010.

D. Geer, R. Bace, P. Gutmann, P. Metzger, C. P. Pfleeger,
J. S. Quarterman, and B. Schneier. CyberInsecurity: The
Cost of Monopoly. Technical report, Computer &
Communications Industry Association, September 2003.

J. R. Gosler and L. Von Thaer. Resilient Military Systems
and the Advanced Cyber Threat. Technical report, Defense
Science Board, January 2013.

A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and

M. Franz. Profile-guided Automated Software Diversity. In
Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO),
CGO 13, pages 1-11, February 2013.

T. J. John and R. Samuel. Herd immunity and herd effect:
new insights and definitions. Furopean Journal of
Epidemiology, 16(7):601-606, July 2000.

P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin.
Obfuscator-LLVM: Software Protection for the Masses. In
Proceedings of the 1st International Workshop on Software
Protection, SPRO ’15, pages 3-9, May 2015.

G. S. K¢, A. D. Keromytis, and V. Prevelakis. Countering
Code-Injection Attacks With Instruction-Set Randomization.
In Proceedings of the 10th ACM Conference on Computer
and Communications Security, CCS ’03, pages 272—-280,
October 2003.

A. Kerckhoffs. La Cryptographie Militaire. Journal des
Sciences Militaires, 1X:5-38, January 1883.

J. C. Knight and N. G. Leveson. An Experimental
Evaluation of the Assumption of Independence in
Multiversion Programming. IFEE Transactions on Software
Engineering, SE-12(1):96-109, January 1986.

P. Larsen, S. Brunthaler, and M. Franz. Security through
Diversity: Are We There Yet? IEEE Security & Privacy,
12(2):28-35, March 2014.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK:
Automated Software Diversity. In 2014 IEEE Symposium on
Security and Privacy, pages 276—291, May 2014.

T. Lészlé and A. Kiss. Obfuscating C++ Programs via
Control Flow Flattening. Annales Universitatis Scientarum

27]

28]

(29]

(30]

(31]

(32]

(33]

Budapestinensis de Rolando Edtviés Nominatae, Sectio
Computatorica, 30:3-19, 2009.

C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In
International Symposium on Code Generation and
Optimization, CGO 2004, pages 75-86, March 2004.

J. McHugh. Software Diversity: Use of Diversity As a
Defense Mechanism. In Proceedings of the 2005 Workshop
on New Security Paradigms, NSPW ’05, pages 19-20,
September 2005.

S. Neves and F. Araujo. Binary code obfuscation through
C++ template metaprogramming. In A. Lopes and J. O.
Pereira, editors, INForum 2012, pages 28—40, September
2012.

A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, and

S. Toannidis. ASIST: Architectural Support for Instruction
Set Randomization. In Proceedings of the 2018 ACM
SIGSAC conference on Computer & Communications
Security, CCS ’13, pages 981-992, 2013.

V. Pappas, M. Polychronakis, and A. D. Keromytis.
Smashing the Gadgets: Hindering Return-Oriented
Programming Using In-place Code Randomization. In 2012
IEEE Symposium on Security and Privacy, pages 601-615,
May 2012.

G. Portokalidis and A. D. Keromytis. Fast and practical
instruction-set randomization for commodity systems. In
Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10, pages 41-48, 2010.
R. Roemer, E. Buchanan, H. Shacham, and S. Savage.
Return-Oriented Programming: Systems, Languages, and
Applications. ACM Transactions on Information and
System Security, 15(1):2:1-2:34, March 2012.

26

(34]

(35]

(36]

(37]

(38]

(39]

[40]

E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit
Hardening Made Easy. In USENIX Security Symposium,
August 2011.

H. Shacham. The Geometry of Innocent Flesh on the Bone:
Return-into-libc Without Function Calls (on the x86). In
Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS ’07, pages 552-561, 2007.
B. W. Silverman. Density Estimation for Statistics and
Data Analysis, volume 26 of Monographs on Statistics and
Applied Probability. Chapman and Hall, London, 1986.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,

C. Liebchen, and A.-R. Sadeghi. Just-in-time code reuse: On
the effectiveness of fine-grained address space layout
randomization. In 2018 IEEE Symposium on Security and
Privacy, pages 574-588, May 2013.

L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal
War in Memory. In 2013 IEEE Symposium on Security and
Privacy, pages 48-62, May 2013.

C. Taylor and J. Alves-Foss. Diversity As a Computer
Defense Mechanism. In Proceedings of the 2005 Workshop
on New Security Paradigms, NSPW ’05, pages 11-14,
September 2005.

R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
Stirring: Self-randomizing Instruction Addresses of Legacy
x86 Binary Code. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security,
CCS ’12, pages 157-168, 2012.

